Cargando…
Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm
Robust estimation of the number, location, and activity of multiple correlated brain sources has long been a challenging task in electromagnetic brain imaging from M/EEG data, one that is significantly impacted by interference from spontaneous brain activity, sensor noise, and other sources of artif...
Autores principales: | Cai, Chang, Hashemi, Ali, Diwakar, Mithun, Haufe, Stefan, Sekihara, Kensuke, Nagarajan, Srikantan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451305/ https://www.ncbi.nlm.nih.gov/pubmed/33039615 http://dx.doi.org/10.1016/j.neuroimage.2020.117411 |
Ejemplares similares
-
Clinical Validation of the Champagne Algorithm for Epilepsy Spike Localization
por: Cai, Chang, et al.
Publicado: (2021) -
Unification of sparse Bayesian learning algorithms for electromagnetic brain imaging with the majorization minimization framework
por: Hashemi, Ali, et al.
Publicado: (2021) -
Empirical Bayesian localization of event-related time-frequency neural activity dynamics
por: Cai, Chang, et al.
Publicado: (2022) -
Clinical Validation of the Champagne Algorithm for Evoked Response Source Localization in Magnetoencephalography
por: Bhutada, Abhishek S., et al.
Publicado: (2021) -
Champagne
Publicado: (1907)