Cargando…
Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels
BACKGROUND: As participants who engage in CrossFit training and competition perform a large volume of high intensity overhead activities, injuries to the shoulder are one of the most common in this sport. Previous research in other sports has indicated that the isokinetic force power profile of the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451436/ https://www.ncbi.nlm.nih.gov/pubmed/34616590 http://dx.doi.org/10.7717/peerj.11643 |
_version_ | 1784569842893848576 |
---|---|
author | Torres-Banduc, Maximiliano A. Jerez-Mayorga, Daniel Moran, Jason Keogh, Justin W.L. Ramírez-Campillo, Rodrigo |
author_facet | Torres-Banduc, Maximiliano A. Jerez-Mayorga, Daniel Moran, Jason Keogh, Justin W.L. Ramírez-Campillo, Rodrigo |
author_sort | Torres-Banduc, Maximiliano A. |
collection | PubMed |
description | BACKGROUND: As participants who engage in CrossFit training and competition perform a large volume of high intensity overhead activities, injuries to the shoulder are one of the most common in this sport. Previous research in other sports has indicated that the isokinetic force power profile of the shoulder joint (IPSJ) rotator muscles may assist in the prediction of shoulder injury. AIM: Therefore, the objective of this study was to determine the IPSJ in males engaged in CrossFit training at different competitive levels. METHODS: In a cross-sectional study design, participants (age, 24.1 ± 2.7 years) classified as ‘beginner’ (n = 6), ‘intermediate’ (n = 7) or ‘advanced’ (n = 9) provided informed consent to participate in this study. The IPSJ assessment involved rotational and diagonal movements, including internal and external shoulder rotator muscles, at both 180°.s(−1) and 300°.s(−1). The variables analysed were peak torque/body mass (%), mean power (W) and the external/internal peak torque/body mass ratio (%). A Kruskal–Wallis test was used to compare the IPSJ of the three groups, with Dunn’s test used for post-hoc analysis. The alpha level was set at p < 0.05. RESULTS: The IPSJ showed greater torque and power values in those who competed at the advanced level as compared to those at a lower competitive level (i.e. intermediate, beginner). This was observed mainly for the internal rotation and internal diagonal movements at both 180°.s(−1) and 300°.s(−1). However, such differences between competitive levels were, in general, absent for the external rotation and external diagonal movements. Moreover, the participants from the advanced competitive level exhibited an imbalance of peak torque between the muscles responsible for the external–internal rotational and external-internal diagonal movements of the shoulder (i.e. peak torque external/internal ratio <66%), particularly in the dominant shoulder. CONCLUSION: These findings suggest greater development of the shoulder internal rotators and a higher probability of shoulder injury in CrossFit athletes at the advanced competitive level. Based on these results, participants engaged in CrossFit training and competition may wish to increase the volume of training for the shoulder external rotator muscles to complement the large increases in shoulder internal rotator strength that occur as a part of their regular training regimes. |
format | Online Article Text |
id | pubmed-8451436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84514362021-10-05 Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels Torres-Banduc, Maximiliano A. Jerez-Mayorga, Daniel Moran, Jason Keogh, Justin W.L. Ramírez-Campillo, Rodrigo PeerJ Anatomy and Physiology BACKGROUND: As participants who engage in CrossFit training and competition perform a large volume of high intensity overhead activities, injuries to the shoulder are one of the most common in this sport. Previous research in other sports has indicated that the isokinetic force power profile of the shoulder joint (IPSJ) rotator muscles may assist in the prediction of shoulder injury. AIM: Therefore, the objective of this study was to determine the IPSJ in males engaged in CrossFit training at different competitive levels. METHODS: In a cross-sectional study design, participants (age, 24.1 ± 2.7 years) classified as ‘beginner’ (n = 6), ‘intermediate’ (n = 7) or ‘advanced’ (n = 9) provided informed consent to participate in this study. The IPSJ assessment involved rotational and diagonal movements, including internal and external shoulder rotator muscles, at both 180°.s(−1) and 300°.s(−1). The variables analysed were peak torque/body mass (%), mean power (W) and the external/internal peak torque/body mass ratio (%). A Kruskal–Wallis test was used to compare the IPSJ of the three groups, with Dunn’s test used for post-hoc analysis. The alpha level was set at p < 0.05. RESULTS: The IPSJ showed greater torque and power values in those who competed at the advanced level as compared to those at a lower competitive level (i.e. intermediate, beginner). This was observed mainly for the internal rotation and internal diagonal movements at both 180°.s(−1) and 300°.s(−1). However, such differences between competitive levels were, in general, absent for the external rotation and external diagonal movements. Moreover, the participants from the advanced competitive level exhibited an imbalance of peak torque between the muscles responsible for the external–internal rotational and external-internal diagonal movements of the shoulder (i.e. peak torque external/internal ratio <66%), particularly in the dominant shoulder. CONCLUSION: These findings suggest greater development of the shoulder internal rotators and a higher probability of shoulder injury in CrossFit athletes at the advanced competitive level. Based on these results, participants engaged in CrossFit training and competition may wish to increase the volume of training for the shoulder external rotator muscles to complement the large increases in shoulder internal rotator strength that occur as a part of their regular training regimes. PeerJ Inc. 2021-09-17 /pmc/articles/PMC8451436/ /pubmed/34616590 http://dx.doi.org/10.7717/peerj.11643 Text en © 2021 Torres-Banduc et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Anatomy and Physiology Torres-Banduc, Maximiliano A. Jerez-Mayorga, Daniel Moran, Jason Keogh, Justin W.L. Ramírez-Campillo, Rodrigo Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels |
title | Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels |
title_full | Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels |
title_fullStr | Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels |
title_full_unstemmed | Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels |
title_short | Isokinetic force-power profile of the shoulder joint in males participating in CrossFit training and competing at different levels |
title_sort | isokinetic force-power profile of the shoulder joint in males participating in crossfit training and competing at different levels |
topic | Anatomy and Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451436/ https://www.ncbi.nlm.nih.gov/pubmed/34616590 http://dx.doi.org/10.7717/peerj.11643 |
work_keys_str_mv | AT torresbanducmaximilianoa isokineticforcepowerprofileoftheshoulderjointinmalesparticipatingincrossfittrainingandcompetingatdifferentlevels AT jerezmayorgadaniel isokineticforcepowerprofileoftheshoulderjointinmalesparticipatingincrossfittrainingandcompetingatdifferentlevels AT moranjason isokineticforcepowerprofileoftheshoulderjointinmalesparticipatingincrossfittrainingandcompetingatdifferentlevels AT keoghjustinwl isokineticforcepowerprofileoftheshoulderjointinmalesparticipatingincrossfittrainingandcompetingatdifferentlevels AT ramirezcampillorodrigo isokineticforcepowerprofileoftheshoulderjointinmalesparticipatingincrossfittrainingandcompetingatdifferentlevels |