Cargando…

A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep

BACKGROUND: Meeting the energy and nitrogen (N) requirements of high‐performing ruminants at the same time as avoiding digestive disturbances (i.e. rumen acidosis) is a key priority in ruminant nutrition. The present study evaluated the effect of a cereal ammoniation treatment, in which barley grain...

Descripción completa

Detalles Bibliográficos
Autores principales: Belanche, Alejandro, Martín‐García, Ignacio, Jiménez, Elisabeth, Jonsson, Nicholas N, Yañez‐Ruiz, David R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451892/
https://www.ncbi.nlm.nih.gov/pubmed/33709464
http://dx.doi.org/10.1002/jsfa.11205
_version_ 1784569948861890560
author Belanche, Alejandro
Martín‐García, Ignacio
Jiménez, Elisabeth
Jonsson, Nicholas N
Yañez‐Ruiz, David R
author_facet Belanche, Alejandro
Martín‐García, Ignacio
Jiménez, Elisabeth
Jonsson, Nicholas N
Yañez‐Ruiz, David R
author_sort Belanche, Alejandro
collection PubMed
description BACKGROUND: Meeting the energy and nitrogen (N) requirements of high‐performing ruminants at the same time as avoiding digestive disturbances (i.e. rumen acidosis) is a key priority in ruminant nutrition. The present study evaluated the effect of a cereal ammoniation treatment, in which barley grains are combined with urea and enzymes that catalyze the conversion of urea to ammonia to optimize rumen function. Twelve rumen cannulated sheep were randomly divided into two groups and fed a diet containing 60% of ammoniated barley (AMM) or untreated barley supplemented with urea (CTL) to investigate the impact on rumen fermentation and feed utilization. RESULTS: AMM had higher total N content and effective rumen degradable N than untreated barely. AMM sheep had a consistently higher rumen pH throughout the day (6.31 versus 6.03) and tended to have a lower post‐prandial ammonia peak and higher acetate molar proportion (+5.1%) than CTL sheep. The rumen environment in AMM sheep favored the colonization and utilization of agro‐industrial by‐products (i.e. orange pulp) by the rumen microbes leading to a higher feed degradability. AMM sheep also had higher total tract apparent N digestibility (+21.7%) and urinary excretion of purine derivatives (+34%), suggesting a higher N uptake and microbial protein synthesis than CTL sheep. CONCLUSION: The inclusion of AMM in the diet of ruminants represents a valid strategy for maintaining rumen pH within a physiological range and improving N utilization by the rumen microbes, which could have positive effects on the health and productivity of animals in intensive production systems. These findings warrant further studies under conventional farm conditions. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
format Online
Article
Text
id pubmed-8451892
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Ltd.
record_format MEDLINE/PubMed
spelling pubmed-84518922021-09-27 A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep Belanche, Alejandro Martín‐García, Ignacio Jiménez, Elisabeth Jonsson, Nicholas N Yañez‐Ruiz, David R J Sci Food Agric Research Articles BACKGROUND: Meeting the energy and nitrogen (N) requirements of high‐performing ruminants at the same time as avoiding digestive disturbances (i.e. rumen acidosis) is a key priority in ruminant nutrition. The present study evaluated the effect of a cereal ammoniation treatment, in which barley grains are combined with urea and enzymes that catalyze the conversion of urea to ammonia to optimize rumen function. Twelve rumen cannulated sheep were randomly divided into two groups and fed a diet containing 60% of ammoniated barley (AMM) or untreated barley supplemented with urea (CTL) to investigate the impact on rumen fermentation and feed utilization. RESULTS: AMM had higher total N content and effective rumen degradable N than untreated barely. AMM sheep had a consistently higher rumen pH throughout the day (6.31 versus 6.03) and tended to have a lower post‐prandial ammonia peak and higher acetate molar proportion (+5.1%) than CTL sheep. The rumen environment in AMM sheep favored the colonization and utilization of agro‐industrial by‐products (i.e. orange pulp) by the rumen microbes leading to a higher feed degradability. AMM sheep also had higher total tract apparent N digestibility (+21.7%) and urinary excretion of purine derivatives (+34%), suggesting a higher N uptake and microbial protein synthesis than CTL sheep. CONCLUSION: The inclusion of AMM in the diet of ruminants represents a valid strategy for maintaining rumen pH within a physiological range and improving N utilization by the rumen microbes, which could have positive effects on the health and productivity of animals in intensive production systems. These findings warrant further studies under conventional farm conditions. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. John Wiley & Sons, Ltd. 2021-03-24 2021-10 /pmc/articles/PMC8451892/ /pubmed/33709464 http://dx.doi.org/10.1002/jsfa.11205 Text en © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Belanche, Alejandro
Martín‐García, Ignacio
Jiménez, Elisabeth
Jonsson, Nicholas N
Yañez‐Ruiz, David R
A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep
title A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep
title_full A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep
title_fullStr A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep
title_full_unstemmed A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep
title_short A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep
title_sort novel ammoniation treatment of barley as a strategy to optimize rumen ph, feed degradability and microbial protein synthesis in sheep
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451892/
https://www.ncbi.nlm.nih.gov/pubmed/33709464
http://dx.doi.org/10.1002/jsfa.11205
work_keys_str_mv AT belanchealejandro anovelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT martingarciaignacio anovelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT jimenezelisabeth anovelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT jonssonnicholasn anovelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT yanezruizdavidr anovelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT belanchealejandro novelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT martingarciaignacio novelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT jimenezelisabeth novelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT jonssonnicholasn novelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep
AT yanezruizdavidr novelammoniationtreatmentofbarleyasastrategytooptimizerumenphfeeddegradabilityandmicrobialproteinsynthesisinsheep