Cargando…

Comparison of annulus fibrosus cell collagen remodeling rates in a microtissue system

It has been suggested that curvature progression in adolescent idiopathic scoliosis occurs through irreversible changes in the intervertebral discs. Strains of mice have been identified who differ in their disc wedging response upon extended asymmetrical compression. Annulus fibrosus (AF) tissue rem...

Descripción completa

Detalles Bibliográficos
Autores principales: Tromp, Isabel N., Foolen, Jasper, van Doeselaar, Marina, Zhang, Ying, Chan, Danny, Kruyt, Moyo C., Creemers, Laura B., Castelein, Rene M., Ito, Keita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8451922/
https://www.ncbi.nlm.nih.gov/pubmed/33222305
http://dx.doi.org/10.1002/jor.24921
Descripción
Sumario:It has been suggested that curvature progression in adolescent idiopathic scoliosis occurs through irreversible changes in the intervertebral discs. Strains of mice have been identified who differ in their disc wedging response upon extended asymmetrical compression. Annulus fibrosus (AF) tissue remodeling could contribute to the faster disc wedging progression previously observed in these mice. Differences in collagen remodeling capacity of AF cells between these in‐bred mice strains were compared using an in vitro microtissue system. AF cells of 8–10‐week‐old LG/J (“fast‐healing”) and C57BL/6J (“normal healing”) mice were embedded in a microtissue platform and cultured for 48 h. Hereafter, tissues were partially released and cultured for another 96 h. Microtissue surface area and waistcoat contraction, collagen orientation, and collagen content were measured. After 96 h postrelease, microtissues with AF cells of LG/J mice showed more surface area contraction (p < .001) and waistcoat contraction (p = .002) than C57BL/6J microtissues. Collagen orientation did not differ at 24 h after partial release. However, at 96 h, collagen in the microtissues from LG/J AF cells was aligned more than in those from C57BL/6J mice (p < .001). Collagen content did not differ between microtissues at 96 h. AF cells of inbred LG/J mice were better able to remodel and realign their collagen fibers than those from C57BL/6J mice. The remodeling of AF tissue could be contributing to the faster disc wedging progression observed in LG/J mice.