Cargando…
A multi-objective genetic algorithm to find active modules in multiplex biological networks
The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452006/ https://www.ncbi.nlm.nih.gov/pubmed/34460810 http://dx.doi.org/10.1371/journal.pcbi.1009263 |
_version_ | 1784569974689366016 |
---|---|
author | Novoa-del-Toro, Elva María Mezura-Montes, Efrén Vignes, Matthieu Térézol, Morgane Magdinier, Frédérique Tichit, Laurent Baudot, Anaïs |
author_facet | Novoa-del-Toro, Elva María Mezura-Montes, Efrén Vignes, Matthieu Térézol, Morgane Magdinier, Frédérique Tichit, Laurent Baudot, Anaïs |
author_sort | Novoa-del-Toro, Elva María |
collection | PubMed |
description | The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease. Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html. Contact: anais.baudot@univ-amu.fr |
format | Online Article Text |
id | pubmed-8452006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84520062021-09-21 A multi-objective genetic algorithm to find active modules in multiplex biological networks Novoa-del-Toro, Elva María Mezura-Montes, Efrén Vignes, Matthieu Térézol, Morgane Magdinier, Frédérique Tichit, Laurent Baudot, Anaïs PLoS Comput Biol Research Article The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease. Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html. Contact: anais.baudot@univ-amu.fr Public Library of Science 2021-08-30 /pmc/articles/PMC8452006/ /pubmed/34460810 http://dx.doi.org/10.1371/journal.pcbi.1009263 Text en © 2021 Novoa-del-Toro et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Novoa-del-Toro, Elva María Mezura-Montes, Efrén Vignes, Matthieu Térézol, Morgane Magdinier, Frédérique Tichit, Laurent Baudot, Anaïs A multi-objective genetic algorithm to find active modules in multiplex biological networks |
title | A multi-objective genetic algorithm to find active modules in multiplex biological networks |
title_full | A multi-objective genetic algorithm to find active modules in multiplex biological networks |
title_fullStr | A multi-objective genetic algorithm to find active modules in multiplex biological networks |
title_full_unstemmed | A multi-objective genetic algorithm to find active modules in multiplex biological networks |
title_short | A multi-objective genetic algorithm to find active modules in multiplex biological networks |
title_sort | multi-objective genetic algorithm to find active modules in multiplex biological networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452006/ https://www.ncbi.nlm.nih.gov/pubmed/34460810 http://dx.doi.org/10.1371/journal.pcbi.1009263 |
work_keys_str_mv | AT novoadeltoroelvamaria amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT mezuramontesefren amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT vignesmatthieu amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT terezolmorgane amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT magdinierfrederique amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT tichitlaurent amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT baudotanais amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT novoadeltoroelvamaria multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT mezuramontesefren multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT vignesmatthieu multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT terezolmorgane multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT magdinierfrederique multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT tichitlaurent multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks AT baudotanais multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks |