Cargando…

A multi-objective genetic algorithm to find active modules in multiplex biological networks

The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules...

Descripción completa

Detalles Bibliográficos
Autores principales: Novoa-del-Toro, Elva María, Mezura-Montes, Efrén, Vignes, Matthieu, Térézol, Morgane, Magdinier, Frédérique, Tichit, Laurent, Baudot, Anaïs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452006/
https://www.ncbi.nlm.nih.gov/pubmed/34460810
http://dx.doi.org/10.1371/journal.pcbi.1009263
_version_ 1784569974689366016
author Novoa-del-Toro, Elva María
Mezura-Montes, Efrén
Vignes, Matthieu
Térézol, Morgane
Magdinier, Frédérique
Tichit, Laurent
Baudot, Anaïs
author_facet Novoa-del-Toro, Elva María
Mezura-Montes, Efrén
Vignes, Matthieu
Térézol, Morgane
Magdinier, Frédérique
Tichit, Laurent
Baudot, Anaïs
author_sort Novoa-del-Toro, Elva María
collection PubMed
description The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease. Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html. Contact: anais.baudot@univ-amu.fr
format Online
Article
Text
id pubmed-8452006
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-84520062021-09-21 A multi-objective genetic algorithm to find active modules in multiplex biological networks Novoa-del-Toro, Elva María Mezura-Montes, Efrén Vignes, Matthieu Térézol, Morgane Magdinier, Frédérique Tichit, Laurent Baudot, Anaïs PLoS Comput Biol Research Article The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease. Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html. Contact: anais.baudot@univ-amu.fr Public Library of Science 2021-08-30 /pmc/articles/PMC8452006/ /pubmed/34460810 http://dx.doi.org/10.1371/journal.pcbi.1009263 Text en © 2021 Novoa-del-Toro et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Novoa-del-Toro, Elva María
Mezura-Montes, Efrén
Vignes, Matthieu
Térézol, Morgane
Magdinier, Frédérique
Tichit, Laurent
Baudot, Anaïs
A multi-objective genetic algorithm to find active modules in multiplex biological networks
title A multi-objective genetic algorithm to find active modules in multiplex biological networks
title_full A multi-objective genetic algorithm to find active modules in multiplex biological networks
title_fullStr A multi-objective genetic algorithm to find active modules in multiplex biological networks
title_full_unstemmed A multi-objective genetic algorithm to find active modules in multiplex biological networks
title_short A multi-objective genetic algorithm to find active modules in multiplex biological networks
title_sort multi-objective genetic algorithm to find active modules in multiplex biological networks
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452006/
https://www.ncbi.nlm.nih.gov/pubmed/34460810
http://dx.doi.org/10.1371/journal.pcbi.1009263
work_keys_str_mv AT novoadeltoroelvamaria amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT mezuramontesefren amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT vignesmatthieu amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT terezolmorgane amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT magdinierfrederique amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT tichitlaurent amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT baudotanais amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT novoadeltoroelvamaria multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT mezuramontesefren multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT vignesmatthieu multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT terezolmorgane multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT magdinierfrederique multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT tichitlaurent multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT baudotanais multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks