Cargando…
Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images
Segmentation of infections from CT scans is important for accurate diagnosis and follow-up in tackling the COVID-19. Although the convolutional neural network has great potential to automate the segmentation task, most existing deep learning-based infection segmentation methods require fully annotat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452156/ https://www.ncbi.nlm.nih.gov/pubmed/34565913 http://dx.doi.org/10.1016/j.patcog.2021.108341 |
_version_ | 1784570010301104128 |
---|---|
author | Liu, Xiaoming Yuan, Quan Gao, Yaozong He, Kelei Wang, Shuo Tang, Xiao Tang, Jinshan Shen, Dinggang |
author_facet | Liu, Xiaoming Yuan, Quan Gao, Yaozong He, Kelei Wang, Shuo Tang, Xiao Tang, Jinshan Shen, Dinggang |
author_sort | Liu, Xiaoming |
collection | PubMed |
description | Segmentation of infections from CT scans is important for accurate diagnosis and follow-up in tackling the COVID-19. Although the convolutional neural network has great potential to automate the segmentation task, most existing deep learning-based infection segmentation methods require fully annotated ground-truth labels for training, which is time-consuming and labor-intensive. This paper proposed a novel weakly supervised segmentation method for COVID-19 infections in CT slices, which only requires scribble supervision and is enhanced with the uncertainty-aware self-ensembling and transformation-consistent techniques. Specifically, to deal with the difficulty caused by the shortage of supervision, an uncertainty-aware mean teacher is incorporated into the scribble-based segmentation method, encouraging the segmentation predictions to be consistent under different perturbations for an input image. This mean teacher model can guide the student model to be trained using information in images without requiring manual annotations. On the other hand, considering the output of the mean teacher contains both correct and unreliable predictions, equally treating each prediction in the teacher model may degrade the performance of the student network. To alleviate this problem, the pixel level uncertainty measure on the predictions of the teacher model is calculated, and then the student model is only guided by reliable predictions from the teacher model. To further regularize the network, a transformation-consistent strategy is also incorporated, which requires the prediction to follow the same transformation if a transform is performed on an input image of the network. The proposed method has been evaluated on two public datasets and one local dataset. The experimental results demonstrate that the proposed method is more effective than other weakly supervised methods and achieves similar performance as those fully supervised. |
format | Online Article Text |
id | pubmed-8452156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84521562021-09-21 Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images Liu, Xiaoming Yuan, Quan Gao, Yaozong He, Kelei Wang, Shuo Tang, Xiao Tang, Jinshan Shen, Dinggang Pattern Recognit Article Segmentation of infections from CT scans is important for accurate diagnosis and follow-up in tackling the COVID-19. Although the convolutional neural network has great potential to automate the segmentation task, most existing deep learning-based infection segmentation methods require fully annotated ground-truth labels for training, which is time-consuming and labor-intensive. This paper proposed a novel weakly supervised segmentation method for COVID-19 infections in CT slices, which only requires scribble supervision and is enhanced with the uncertainty-aware self-ensembling and transformation-consistent techniques. Specifically, to deal with the difficulty caused by the shortage of supervision, an uncertainty-aware mean teacher is incorporated into the scribble-based segmentation method, encouraging the segmentation predictions to be consistent under different perturbations for an input image. This mean teacher model can guide the student model to be trained using information in images without requiring manual annotations. On the other hand, considering the output of the mean teacher contains both correct and unreliable predictions, equally treating each prediction in the teacher model may degrade the performance of the student network. To alleviate this problem, the pixel level uncertainty measure on the predictions of the teacher model is calculated, and then the student model is only guided by reliable predictions from the teacher model. To further regularize the network, a transformation-consistent strategy is also incorporated, which requires the prediction to follow the same transformation if a transform is performed on an input image of the network. The proposed method has been evaluated on two public datasets and one local dataset. The experimental results demonstrate that the proposed method is more effective than other weakly supervised methods and achieves similar performance as those fully supervised. Elsevier Ltd. 2022-02 2021-09-20 /pmc/articles/PMC8452156/ /pubmed/34565913 http://dx.doi.org/10.1016/j.patcog.2021.108341 Text en © 2021 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Liu, Xiaoming Yuan, Quan Gao, Yaozong He, Kelei Wang, Shuo Tang, Xiao Tang, Jinshan Shen, Dinggang Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images |
title | Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images |
title_full | Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images |
title_fullStr | Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images |
title_full_unstemmed | Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images |
title_short | Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images |
title_sort | weakly supervised segmentation of covid19 infection with scribble annotation on ct images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452156/ https://www.ncbi.nlm.nih.gov/pubmed/34565913 http://dx.doi.org/10.1016/j.patcog.2021.108341 |
work_keys_str_mv | AT liuxiaoming weaklysupervisedsegmentationofcovid19infectionwithscribbleannotationonctimages AT yuanquan weaklysupervisedsegmentationofcovid19infectionwithscribbleannotationonctimages AT gaoyaozong weaklysupervisedsegmentationofcovid19infectionwithscribbleannotationonctimages AT hekelei weaklysupervisedsegmentationofcovid19infectionwithscribbleannotationonctimages AT wangshuo weaklysupervisedsegmentationofcovid19infectionwithscribbleannotationonctimages AT tangxiao weaklysupervisedsegmentationofcovid19infectionwithscribbleannotationonctimages AT tangjinshan weaklysupervisedsegmentationofcovid19infectionwithscribbleannotationonctimages AT shendinggang weaklysupervisedsegmentationofcovid19infectionwithscribbleannotationonctimages |