Cargando…
Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Images
Segmentation of infections from CT scans is important for accurate diagnosis and follow-up in tackling the COVID-19. Although the convolutional neural network has great potential to automate the segmentation task, most existing deep learning-based infection segmentation methods require fully annotat...
Autores principales: | Liu, Xiaoming, Yuan, Quan, Gao, Yaozong, He, Kelei, Wang, Shuo, Tang, Xiao, Tang, Jinshan, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452156/ https://www.ncbi.nlm.nih.gov/pubmed/34565913 http://dx.doi.org/10.1016/j.patcog.2021.108341 |
Ejemplares similares
-
ScribbleDom: using scribble-annotated histology images to identify domains in spatial transcriptomics data
por: Rahman, Mohammad Nuwaisir, et al.
Publicado: (2023) -
Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging
por: Früh, Marcel, et al.
Publicado: (2021) -
Weakly supervised segmentation of COVID-19 infection with local lesion coherence on CT images
por: Sun, Wanchun, et al.
Publicado: (2023) -
Weakly supervised segmentation models as explainable radiological classifiers for lung tumour detection on CT images
por: O’Shea, Robert, et al.
Publicado: (2023) -
Synergistic learning of lung lobe segmentation and hierarchical multi-instance classification for automated severity assessment of COVID-19 in CT images
por: He, Kelei, et al.
Publicado: (2021)