Cargando…
Chirality, a new key for the definition of the connection and curvature of a Lie-Kac superalgebra
A natural generalization of a Lie algebra connection, or Yang-Mills field, to the case of a Lie-Kac superalgebra, for example SU(m/n), just in terms of ordinary complex functions and differentials, is proposed. Using the chirality [Formula: see text] which defines the supertrace of the superalgebra:...
Autor principal: | Thierry-Mieg, Jean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452262/ https://www.ncbi.nlm.nih.gov/pubmed/34548777 http://dx.doi.org/10.1007/jhep01(2021)111 |
Ejemplares similares
-
New spacetime superalgebras and their Kac-Moody extension
por: Bergshoeff, E A, et al.
Publicado: (1989) -
Lie Superalgebras
por: Gorelik, Maria, et al.
Publicado: (2014) -
Uniqueness of Cartan matrices and automorphisms of generalized Kac-Moody superalgebras
por: Ray, U
Publicado: (2002) -
Scalar anomaly cancellation reveals the hidden superalgebraic structure of the quantum chiral SU(2/1) model of leptons and quarks
por: Thierry-Mieg, Jean
Publicado: (2020) -
Dualities and representations of Lie superalgebras
por: Cheng, Shun-Jen, et al.
Publicado: (2013)