Cargando…
InNetGAN: Inception Network-Based Generative Adversarial Network for Denoising Low-Dose Computed Tomography
Low-dose Computed Tomography (LDCT) has gained a great deal of attention in clinical procedures due to its ability to reduce the patient's risk of exposure to the X-ray radiation. However, reducing the X-ray dose increases the quantum noise and artifacts in the acquired LDCT images. As a result...
Autores principales: | Kulathilake, K. A. Saneera Hemantha, Abdullah, Nor Aniza, Bandara, A. M. Randitha Ravimal, Lai, Khin Wee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452440/ https://www.ncbi.nlm.nih.gov/pubmed/34552709 http://dx.doi.org/10.1155/2021/9975762 |
Ejemplares similares
-
Retracted: InNetGAN: Inception Network-Based Generative Adversarial Network for Denoising Low-Dose Computed Tomography
por: Healthcare Engineering, Journal of
Publicado: (2023) -
A review on Deep Learning approaches for low-dose Computed Tomography restoration
por: Kulathilake, K. A. Saneera Hemantha, et al.
Publicado: (2021) -
Generative Adversarial Network Combined with SE-ResNet and Dilated Inception Block for Segmenting Retinal Vessels
por: Yue, Chen, et al.
Publicado: (2022) -
Deep Learning Model for Prediction of Progressive Mild Cognitive Impairment to Alzheimer’s Disease Using Structural MRI
por: Lim, Bing Yan, et al.
Publicado: (2022) -
Auto-Denoising for EEG Signals Using Generative Adversarial Network
por: An, Yang, et al.
Publicado: (2022)