Cargando…

Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro

Micro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not always used to their full potential in respect t...

Descripción completa

Detalles Bibliográficos
Autores principales: Mossink, Britt, Verboven, Anouk H.A., van Hugte, Eline J.H., Klein Gunnewiek, Teun M., Parodi, Giulia, Linda, Katrin, Schoenmaker, Chantal, Kleefstra, Tjitske, Kozicz, Tamas, van Bokhoven, Hans, Schubert, Dirk, Nadif Kasri, Nael, Frega, Monica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452490/
https://www.ncbi.nlm.nih.gov/pubmed/34329594
http://dx.doi.org/10.1016/j.stemcr.2021.07.001
_version_ 1784570080075448320
author Mossink, Britt
Verboven, Anouk H.A.
van Hugte, Eline J.H.
Klein Gunnewiek, Teun M.
Parodi, Giulia
Linda, Katrin
Schoenmaker, Chantal
Kleefstra, Tjitske
Kozicz, Tamas
van Bokhoven, Hans
Schubert, Dirk
Nadif Kasri, Nael
Frega, Monica
author_facet Mossink, Britt
Verboven, Anouk H.A.
van Hugte, Eline J.H.
Klein Gunnewiek, Teun M.
Parodi, Giulia
Linda, Katrin
Schoenmaker, Chantal
Kleefstra, Tjitske
Kozicz, Tamas
van Bokhoven, Hans
Schubert, Dirk
Nadif Kasri, Nael
Frega, Monica
author_sort Mossink, Britt
collection PubMed
description Micro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not always used to their full potential in respect to experimental design, execution, and data analysis. Therefore, we benchmarked the robustness of MEA-derived neuronal activity patterns from ten healthy individual control lines, and uncover comparable network phenotypes. To achieve standardization, we provide recommendations on experimental design and analysis. With such standardization, MEAs can be used as a reliable platform to distinguish (disease-specific) network phenotypes. In conclusion, we show that MEAs are a powerful and robust tool to uncover functional neuronal network phenotypes from hiPSC-derived neuronal networks, and provide an important resource to advance the hiPSC field toward the use of MEAs for disease phenotyping and drug discovery.
format Online
Article
Text
id pubmed-8452490
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-84524902021-09-27 Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro Mossink, Britt Verboven, Anouk H.A. van Hugte, Eline J.H. Klein Gunnewiek, Teun M. Parodi, Giulia Linda, Katrin Schoenmaker, Chantal Kleefstra, Tjitske Kozicz, Tamas van Bokhoven, Hans Schubert, Dirk Nadif Kasri, Nael Frega, Monica Stem Cell Reports Article Micro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not always used to their full potential in respect to experimental design, execution, and data analysis. Therefore, we benchmarked the robustness of MEA-derived neuronal activity patterns from ten healthy individual control lines, and uncover comparable network phenotypes. To achieve standardization, we provide recommendations on experimental design and analysis. With such standardization, MEAs can be used as a reliable platform to distinguish (disease-specific) network phenotypes. In conclusion, we show that MEAs are a powerful and robust tool to uncover functional neuronal network phenotypes from hiPSC-derived neuronal networks, and provide an important resource to advance the hiPSC field toward the use of MEAs for disease phenotyping and drug discovery. Elsevier 2021-07-29 /pmc/articles/PMC8452490/ /pubmed/34329594 http://dx.doi.org/10.1016/j.stemcr.2021.07.001 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mossink, Britt
Verboven, Anouk H.A.
van Hugte, Eline J.H.
Klein Gunnewiek, Teun M.
Parodi, Giulia
Linda, Katrin
Schoenmaker, Chantal
Kleefstra, Tjitske
Kozicz, Tamas
van Bokhoven, Hans
Schubert, Dirk
Nadif Kasri, Nael
Frega, Monica
Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro
title Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro
title_full Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro
title_fullStr Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro
title_full_unstemmed Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro
title_short Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro
title_sort human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452490/
https://www.ncbi.nlm.nih.gov/pubmed/34329594
http://dx.doi.org/10.1016/j.stemcr.2021.07.001
work_keys_str_mv AT mossinkbritt humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT verbovenanoukha humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT vanhugteelinejh humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT kleingunnewiekteunm humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT parodigiulia humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT lindakatrin humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT schoenmakerchantal humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT kleefstratjitske humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT kozicztamas humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT vanbokhovenhans humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT schubertdirk humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT nadifkasrinael humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro
AT fregamonica humanneuronalnetworksonmicroelectrodearraysareahighlyrobusttooltostudydiseasespecificgenotypephenotypecorrelationsinvitro