Cargando…
De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells
Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereb...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452533/ https://www.ncbi.nlm.nih.gov/pubmed/34416176 http://dx.doi.org/10.1016/j.stemcr.2021.07.015 |
_version_ | 1784570090488856576 |
---|---|
author | Fukuda, Atsushi Hazelbaker, Dane Z. Motosugi, Nami Hao, Jin Limone, Francesco Beccard, Amanda Mazzucato, Patrizia Messana, Angelica Okada, Chisa San Juan, Irune Guerra Qian, Menglu Umezawa, Akihiro Akutsu, Hidenori Barrett, Lindy E. Eggan, Kevin |
author_facet | Fukuda, Atsushi Hazelbaker, Dane Z. Motosugi, Nami Hao, Jin Limone, Francesco Beccard, Amanda Mazzucato, Patrizia Messana, Angelica Okada, Chisa San Juan, Irune Guerra Qian, Menglu Umezawa, Akihiro Akutsu, Hidenori Barrett, Lindy E. Eggan, Kevin |
author_sort | Fukuda, Atsushi |
collection | PubMed |
description | Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereby causing erosion of dosage compensation in female hPSCs. Here, we report that the de novo DNA methyltransferases DNMT3A/3B are necessary for XIST repression in female hPSCs. We found that the deletion of both genes, but not the individual genes, inhibited XIST silencing, maintained the heterochromatin mark of H3K27me3, and did not cause global overdosage in X-linked genes. Meanwhile, DNMT3A/3B deletion after XIST repression failed to restore X chromosome inactivation. Our findings revealed that de novo DNA methyltransferases are primary factors responsible for initiating erosion of dosage compensation in female hPSCs, and XIST silencing is stably maintained in a de novo DNA-methylation-independent manner. |
format | Online Article Text |
id | pubmed-8452533 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-84525332021-09-27 De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells Fukuda, Atsushi Hazelbaker, Dane Z. Motosugi, Nami Hao, Jin Limone, Francesco Beccard, Amanda Mazzucato, Patrizia Messana, Angelica Okada, Chisa San Juan, Irune Guerra Qian, Menglu Umezawa, Akihiro Akutsu, Hidenori Barrett, Lindy E. Eggan, Kevin Stem Cell Reports Report Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereby causing erosion of dosage compensation in female hPSCs. Here, we report that the de novo DNA methyltransferases DNMT3A/3B are necessary for XIST repression in female hPSCs. We found that the deletion of both genes, but not the individual genes, inhibited XIST silencing, maintained the heterochromatin mark of H3K27me3, and did not cause global overdosage in X-linked genes. Meanwhile, DNMT3A/3B deletion after XIST repression failed to restore X chromosome inactivation. Our findings revealed that de novo DNA methyltransferases are primary factors responsible for initiating erosion of dosage compensation in female hPSCs, and XIST silencing is stably maintained in a de novo DNA-methylation-independent manner. Elsevier 2021-08-19 /pmc/articles/PMC8452533/ /pubmed/34416176 http://dx.doi.org/10.1016/j.stemcr.2021.07.015 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Report Fukuda, Atsushi Hazelbaker, Dane Z. Motosugi, Nami Hao, Jin Limone, Francesco Beccard, Amanda Mazzucato, Patrizia Messana, Angelica Okada, Chisa San Juan, Irune Guerra Qian, Menglu Umezawa, Akihiro Akutsu, Hidenori Barrett, Lindy E. Eggan, Kevin De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells |
title | De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells |
title_full | De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells |
title_fullStr | De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells |
title_full_unstemmed | De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells |
title_short | De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells |
title_sort | de novo dna methyltransferases dnmt3a and dnmt3b are essential for xist silencing for erosion of dosage compensation in pluripotent stem cells |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452533/ https://www.ncbi.nlm.nih.gov/pubmed/34416176 http://dx.doi.org/10.1016/j.stemcr.2021.07.015 |
work_keys_str_mv | AT fukudaatsushi denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT hazelbakerdanez denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT motosuginami denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT haojin denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT limonefrancesco denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT beccardamanda denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT mazzucatopatrizia denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT messanaangelica denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT okadachisa denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT sanjuaniruneguerra denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT qianmenglu denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT umezawaakihiro denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT akutsuhidenori denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT barrettlindye denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells AT eggankevin denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells |