Cargando…

De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells

Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereb...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukuda, Atsushi, Hazelbaker, Dane Z., Motosugi, Nami, Hao, Jin, Limone, Francesco, Beccard, Amanda, Mazzucato, Patrizia, Messana, Angelica, Okada, Chisa, San Juan, Irune Guerra, Qian, Menglu, Umezawa, Akihiro, Akutsu, Hidenori, Barrett, Lindy E., Eggan, Kevin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452533/
https://www.ncbi.nlm.nih.gov/pubmed/34416176
http://dx.doi.org/10.1016/j.stemcr.2021.07.015
_version_ 1784570090488856576
author Fukuda, Atsushi
Hazelbaker, Dane Z.
Motosugi, Nami
Hao, Jin
Limone, Francesco
Beccard, Amanda
Mazzucato, Patrizia
Messana, Angelica
Okada, Chisa
San Juan, Irune Guerra
Qian, Menglu
Umezawa, Akihiro
Akutsu, Hidenori
Barrett, Lindy E.
Eggan, Kevin
author_facet Fukuda, Atsushi
Hazelbaker, Dane Z.
Motosugi, Nami
Hao, Jin
Limone, Francesco
Beccard, Amanda
Mazzucato, Patrizia
Messana, Angelica
Okada, Chisa
San Juan, Irune Guerra
Qian, Menglu
Umezawa, Akihiro
Akutsu, Hidenori
Barrett, Lindy E.
Eggan, Kevin
author_sort Fukuda, Atsushi
collection PubMed
description Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereby causing erosion of dosage compensation in female hPSCs. Here, we report that the de novo DNA methyltransferases DNMT3A/3B are necessary for XIST repression in female hPSCs. We found that the deletion of both genes, but not the individual genes, inhibited XIST silencing, maintained the heterochromatin mark of H3K27me3, and did not cause global overdosage in X-linked genes. Meanwhile, DNMT3A/3B deletion after XIST repression failed to restore X chromosome inactivation. Our findings revealed that de novo DNA methyltransferases are primary factors responsible for initiating erosion of dosage compensation in female hPSCs, and XIST silencing is stably maintained in a de novo DNA-methylation-independent manner.
format Online
Article
Text
id pubmed-8452533
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-84525332021-09-27 De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells Fukuda, Atsushi Hazelbaker, Dane Z. Motosugi, Nami Hao, Jin Limone, Francesco Beccard, Amanda Mazzucato, Patrizia Messana, Angelica Okada, Chisa San Juan, Irune Guerra Qian, Menglu Umezawa, Akihiro Akutsu, Hidenori Barrett, Lindy E. Eggan, Kevin Stem Cell Reports Report Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereby causing erosion of dosage compensation in female hPSCs. Here, we report that the de novo DNA methyltransferases DNMT3A/3B are necessary for XIST repression in female hPSCs. We found that the deletion of both genes, but not the individual genes, inhibited XIST silencing, maintained the heterochromatin mark of H3K27me3, and did not cause global overdosage in X-linked genes. Meanwhile, DNMT3A/3B deletion after XIST repression failed to restore X chromosome inactivation. Our findings revealed that de novo DNA methyltransferases are primary factors responsible for initiating erosion of dosage compensation in female hPSCs, and XIST silencing is stably maintained in a de novo DNA-methylation-independent manner. Elsevier 2021-08-19 /pmc/articles/PMC8452533/ /pubmed/34416176 http://dx.doi.org/10.1016/j.stemcr.2021.07.015 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Report
Fukuda, Atsushi
Hazelbaker, Dane Z.
Motosugi, Nami
Hao, Jin
Limone, Francesco
Beccard, Amanda
Mazzucato, Patrizia
Messana, Angelica
Okada, Chisa
San Juan, Irune Guerra
Qian, Menglu
Umezawa, Akihiro
Akutsu, Hidenori
Barrett, Lindy E.
Eggan, Kevin
De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells
title De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells
title_full De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells
title_fullStr De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells
title_full_unstemmed De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells
title_short De novo DNA methyltransferases DNMT3A and DNMT3B are essential for XIST silencing for erosion of dosage compensation in pluripotent stem cells
title_sort de novo dna methyltransferases dnmt3a and dnmt3b are essential for xist silencing for erosion of dosage compensation in pluripotent stem cells
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452533/
https://www.ncbi.nlm.nih.gov/pubmed/34416176
http://dx.doi.org/10.1016/j.stemcr.2021.07.015
work_keys_str_mv AT fukudaatsushi denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT hazelbakerdanez denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT motosuginami denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT haojin denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT limonefrancesco denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT beccardamanda denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT mazzucatopatrizia denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT messanaangelica denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT okadachisa denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT sanjuaniruneguerra denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT qianmenglu denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT umezawaakihiro denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT akutsuhidenori denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT barrettlindye denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells
AT eggankevin denovodnamethyltransferasesdnmt3aanddnmt3bareessentialforxistsilencingforerosionofdosagecompensationinpluripotentstemcells