Cargando…
Systematic review of research design and reporting of imaging studies applying convolutional neural networks for radiological cancer diagnosis
OBJECTIVES: To perform a systematic review of design and reporting of imaging studies applying convolutional neural network models for radiological cancer diagnosis. METHODS: A comprehensive search of PUBMED, EMBASE, MEDLINE and SCOPUS was performed for published studies applying convolutional neura...
Autores principales: | O’Shea, Robert J., Sharkey, Amy Rose, Cook, Gary J. R., Goh, Vicky |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452579/ https://www.ncbi.nlm.nih.gov/pubmed/33860829 http://dx.doi.org/10.1007/s00330-021-07881-2 |
Ejemplares similares
-
Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network
por: Ye, Hai, et al.
Publicado: (2019) -
CardiSort: a convolutional neural network for cross vendor automated sorting of cardiac MR images
por: Lim, Ruth P., et al.
Publicado: (2022) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
por: Koitka, Sven, et al.
Publicado: (2020) -
Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI
por: Rahimpour, Masoomeh, et al.
Publicado: (2022)