Cargando…
Artefact-removal algorithms for Fourier domain quantum optical coherence tomography
Quantum Optical Coherence Tomography (Q-OCT) is a non-classical equivalent of Optical Coherence Tomography and is able to provide a twofold axial resolution increase and immunity to resolution-degrading dispersion. The main drawback of Q-OCT are artefacts which are additional elements that clutter a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452642/ https://www.ncbi.nlm.nih.gov/pubmed/34545121 http://dx.doi.org/10.1038/s41598-021-98106-5 |
Sumario: | Quantum Optical Coherence Tomography (Q-OCT) is a non-classical equivalent of Optical Coherence Tomography and is able to provide a twofold axial resolution increase and immunity to resolution-degrading dispersion. The main drawback of Q-OCT are artefacts which are additional elements that clutter an A-scan and lead to a complete loss of structural information for multilayered objects. Whereas there are very practical and successful methods for artefact removal in Time-domain Q-OCT, no such scheme has been devised for Fourier-domain Q-OCT (Fd-Q-OCT), although the latter modality—through joint spectrum detection—outputs a lot of useful information on both the system and the imaged object. Here, we propose two algorithms which process a Fd-Q-OCT joint spectrum into an artefact-free A-scan. We present the theoretical background of these algorithms and show their performance on computer-generated data. The limitations of both algorithms with regards to the experimental system and the imaged object are discussed. |
---|