Cargando…

Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane

Sugarcane is a trans-seasonal long-duration crop and tillering phase (60–150 days) is the most sensitive phase for moisture stress, causing significant reduction in biomass accumulation. The study focussed to assess the Genotype × Environment Interaction (GEI) for tillering phase moisture stress and...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahadevaiah, C., Hapase, Prakash, Sreenivasa, V., Hapase, Ramesh, Swamy, H. K. Mahadeva, Anilkumar, C., Mohanraj, K., Hemaprabha, G., Ram, Bakshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452706/
https://www.ncbi.nlm.nih.gov/pubmed/34545116
http://dx.doi.org/10.1038/s41598-021-98002-y
_version_ 1784570126436139008
author Mahadevaiah, C.
Hapase, Prakash
Sreenivasa, V.
Hapase, Ramesh
Swamy, H. K. Mahadeva
Anilkumar, C.
Mohanraj, K.
Hemaprabha, G.
Ram, Bakshi
author_facet Mahadevaiah, C.
Hapase, Prakash
Sreenivasa, V.
Hapase, Ramesh
Swamy, H. K. Mahadeva
Anilkumar, C.
Mohanraj, K.
Hemaprabha, G.
Ram, Bakshi
author_sort Mahadevaiah, C.
collection PubMed
description Sugarcane is a trans-seasonal long-duration crop and tillering phase (60–150 days) is the most sensitive phase for moisture stress, causing significant reduction in biomass accumulation. The study focussed to assess the Genotype × Environment Interaction (GEI) for tillering phase moisture stress and to identify the stable genotypes in sugarcane. The study dealt with 14 drought tolerant genotypes and two standards (Co 86032 and CoM 0265) which were evaluated in two plant and one ratoon trials at four locations in Maharashtra, India. The moisture stress was imposed for 60 days from 90 to 150 days after planting and corresponded to tillering phase by withholding the irrigation. The AMMI ANOVA showed significant GEI for cane and CCS yield accounting 18.33 and 19.45 percent of variability respectively. Drought and genotype main effects were highly significant accounting 49.08 and 32.59 percent variability for cane yield and, 52.45 and 28.10 percent variability for CCS yield respectively. The first two interactive principal component (IPCA) biplots of AMMI showed diverse nature of all four environments and the Discriminative vs Mean biplots of Genotype + genotype × environment interaction (GGE) model showed that ‘Pune’ as the highly discriminating environment. The genotype ranking biplots of GGE showed that Co 85019 was the most stable genotype followed by Co 98017. Similar results were also observed in Yield vs IPCA1 biplot of AMMI, which revealed Co 85019 and Co 98017 as high yielding stable varieties. Yield related environmental maximum (YREM) showed thirteen and nine percent loss due to crossover interactions in Co 85019 for cane yield and CCS yield respectively. The multi-environment BLUP and genotype stability index (GSI) has reaffirmed that Co 85019 as a drought proof and stable genotype with high yield under tillering phase drought stress. The results suggested using Co 85019 for cultivation in drought prone regions and the usefulness of the methodology for identifying more such sugarcane varieties for the benefit of resource poor famers in drought affected regions.
format Online
Article
Text
id pubmed-8452706
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84527062021-09-22 Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane Mahadevaiah, C. Hapase, Prakash Sreenivasa, V. Hapase, Ramesh Swamy, H. K. Mahadeva Anilkumar, C. Mohanraj, K. Hemaprabha, G. Ram, Bakshi Sci Rep Article Sugarcane is a trans-seasonal long-duration crop and tillering phase (60–150 days) is the most sensitive phase for moisture stress, causing significant reduction in biomass accumulation. The study focussed to assess the Genotype × Environment Interaction (GEI) for tillering phase moisture stress and to identify the stable genotypes in sugarcane. The study dealt with 14 drought tolerant genotypes and two standards (Co 86032 and CoM 0265) which were evaluated in two plant and one ratoon trials at four locations in Maharashtra, India. The moisture stress was imposed for 60 days from 90 to 150 days after planting and corresponded to tillering phase by withholding the irrigation. The AMMI ANOVA showed significant GEI for cane and CCS yield accounting 18.33 and 19.45 percent of variability respectively. Drought and genotype main effects were highly significant accounting 49.08 and 32.59 percent variability for cane yield and, 52.45 and 28.10 percent variability for CCS yield respectively. The first two interactive principal component (IPCA) biplots of AMMI showed diverse nature of all four environments and the Discriminative vs Mean biplots of Genotype + genotype × environment interaction (GGE) model showed that ‘Pune’ as the highly discriminating environment. The genotype ranking biplots of GGE showed that Co 85019 was the most stable genotype followed by Co 98017. Similar results were also observed in Yield vs IPCA1 biplot of AMMI, which revealed Co 85019 and Co 98017 as high yielding stable varieties. Yield related environmental maximum (YREM) showed thirteen and nine percent loss due to crossover interactions in Co 85019 for cane yield and CCS yield respectively. The multi-environment BLUP and genotype stability index (GSI) has reaffirmed that Co 85019 as a drought proof and stable genotype with high yield under tillering phase drought stress. The results suggested using Co 85019 for cultivation in drought prone regions and the usefulness of the methodology for identifying more such sugarcane varieties for the benefit of resource poor famers in drought affected regions. Nature Publishing Group UK 2021-09-20 /pmc/articles/PMC8452706/ /pubmed/34545116 http://dx.doi.org/10.1038/s41598-021-98002-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mahadevaiah, C.
Hapase, Prakash
Sreenivasa, V.
Hapase, Ramesh
Swamy, H. K. Mahadeva
Anilkumar, C.
Mohanraj, K.
Hemaprabha, G.
Ram, Bakshi
Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane
title Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane
title_full Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane
title_fullStr Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane
title_full_unstemmed Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane
title_short Delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane
title_sort delineation of genotype × environment interaction for identification of stable genotypes for tillering phase drought stress tolerance in sugarcane
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452706/
https://www.ncbi.nlm.nih.gov/pubmed/34545116
http://dx.doi.org/10.1038/s41598-021-98002-y
work_keys_str_mv AT mahadevaiahc delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane
AT hapaseprakash delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane
AT sreenivasav delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane
AT hapaseramesh delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane
AT swamyhkmahadeva delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane
AT anilkumarc delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane
AT mohanrajk delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane
AT hemaprabhag delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane
AT rambakshi delineationofgenotypeenvironmentinteractionforidentificationofstablegenotypesfortilleringphasedroughtstresstoleranceinsugarcane