Cargando…
Identification of Key Candidate Genes and Chemical Perturbagens in Diabetic Kidney Disease Using Integrated Bioinformatics Analysis
Globally, nearly 40 percent of all diabetic patients develop serious diabetic kidney disease (DKD). The identification of the potential early-stage biomarkers and elucidation of their underlying molecular mechanisms in DKD are required. In this study, we performed integrated bioinformatics analysis...
Autores principales: | Gao, Zhuo, S, Aishwarya, Li, Xiao-mei, Li, Xin-lun, Sui, Li-na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453249/ https://www.ncbi.nlm.nih.gov/pubmed/34557161 http://dx.doi.org/10.3389/fendo.2021.721202 |
Ejemplares similares
-
Integrating Differential Gene Expression Analysis with Perturbagen-Response Signatures May Identify Novel Therapies for Thyroid-Associated Orbitopathy
por: Lee, John Y., et al.
Publicado: (2020) -
Identification of key genes and pathways in adrenocortical carcinoma: evidence from bioinformatic analysis
por: Yin, Mengsha, et al.
Publicado: (2023) -
Identification of key candidate genes and pathways in glioblastoma by integrated bioinformatical analysis
por: Li, Lei, et al.
Publicado: (2019) -
Identification of Crucial Genes and Key Functions in Type 2 Diabetic Hearts by Bioinformatic Analysis
por: Huang, Xin, et al.
Publicado: (2022) -
Identification of key immune genes of osteoporosis based on bioinformatics and machine learning
por: Hao, Song, et al.
Publicado: (2023)