Cargando…
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial Networks(FA-GAN) is proposed to generate the super- resolution MR image from...
Autores principales: | Jiang, Mingfeng, Zhi, Minghao, Wei, Liying, Yang, Xiaocheng, Zhang, Jucheng, Li, Yongming, Wang, Pin, Huang, Jiahao, Yang, Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453331/ https://www.ncbi.nlm.nih.gov/pubmed/34411966 http://dx.doi.org/10.1016/j.compmedimag.2021.101969 |
Ejemplares similares
-
SARA-GAN: Self-Attention and Relative Average Discriminator Based Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction
por: Yuan, Zhenmou, et al.
Publicado: (2020) -
SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks
por: Zhang, Kuan, et al.
Publicado: (2022) -
hicGAN infers super resolution Hi-C data with generative adversarial networks
por: Liu, Qiao, et al.
Publicado: (2019) -
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021) -
Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
por: Xu, Dan, et al.
Publicado: (2023)