Cargando…
Corrigendum: Prediction of EGFR Mutation Status Based on (18)F-FDG PET/CT Imaging Using Deep Learning-Based Model in Lung Adenocarcinoma
Autores principales: | Yin, Guotao, Wang, Ziyang, Song, Yingchao, Li, Xiaofeng, Chen, Yiwen, Zhu, Lei, Su, Qian, Dai, Dong, Xu, Wengui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8453350/ https://www.ncbi.nlm.nih.gov/pubmed/34557420 http://dx.doi.org/10.3389/fonc.2021.747316 |
Ejemplares similares
-
Prediction of EGFR Mutation Status Based on (18)F-FDG PET/CT Imaging Using Deep Learning-Based Model in Lung Adenocarcinoma
por: Yin, Guotao, et al.
Publicado: (2021) -
Predictive Power of a Radiomic Signature Based on (18)F-FDG PET/CT Images for EGFR Mutational Status in NSCLC
por: Li, Xiaofeng, et al.
Publicado: (2019) -
Predictive Value of (18)F-FDG PET/CT-Based Radiomics Model for Occult Axillary Lymph Node Metastasis in Clinically Node-Negative Breast Cancer
por: Chen, Kun, et al.
Publicado: (2022) -
(18)F‐FDG PET/CT imaging: A supplementary understanding of pulmonary sclerosing pneumocytoma
por: Xu, Jie, et al.
Publicado: (2019) -
Enhanced glucose metabolism mediated by CD147 is associated with (18)F‐FDG PET/CT imaging in lung adenocarcinoma
por: Zhang, Yufan, et al.
Publicado: (2020)