Cargando…
Minimizing bias in massive multi-arm observational studies with BCAUS: balancing covariates automatically using supervision
BACKGROUND: Observational studies are increasingly being used to provide supplementary evidence in addition to Randomized Control Trials (RCTs) because they provide a scale and diversity of participants and outcomes that would be infeasible in an RCT. Additionally, they more closely reflect the sett...
Autores principales: | Belthangady, Chinmay, Stedden, Will, Norgeot, Beau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454087/ https://www.ncbi.nlm.nih.gov/pubmed/34544367 http://dx.doi.org/10.1186/s12874-021-01383-x |
Ejemplares similares
-
Causal deep learning reveals the comparative effectiveness of antihyperglycemic treatments in poorly controlled diabetes
por: Belthangady, Chinmay, et al.
Publicado: (2022) -
Multi-arm covariate-adaptive randomization
por: Hu, Feifang, et al.
Publicado: (2022) -
Post Hoc Subgroup Analysis of the BCause Study Assessing the Effect of AbobotulinumtoxinA on Post-Stroke Shoulder Pain in Adults
por: Riberto, Marcelo, et al.
Publicado: (2022) -
The benefits of covariate adjustment for adaptive multi-arm
designs
por: Lee, Kim May, et al.
Publicado: (2022) -
Automatic Labeling of Special Diagnostic Mammography Views from Images and DICOM Headers
por: Lituiev, Dmytro S., et al.
Publicado: (2018)