Cargando…
A hybrid framework for improving uncertainty quantification in deep learning-based QSAR regression modeling
Reliable uncertainty quantification for statistical models is crucial in various downstream applications, especially for drug design and discovery where mistakes may incur a large amount of cost. This topic has therefore absorbed much attention and a plethora of methods have been proposed over the p...
Autores principales: | Wang, Dingyan, Yu, Jie, Chen, Lifan, Li, Xutong, Jiang, Hualiang, Chen, Kaixian, Zheng, Mingyue, Luo, Xiaomin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454160/ https://www.ncbi.nlm.nih.gov/pubmed/34544485 http://dx.doi.org/10.1186/s13321-021-00551-x |
Ejemplares similares
-
Improving the Virtual Screening Ability of Target-Specific Scoring Functions Using Deep Learning Methods
por: Wang, Dingyan, et al.
Publicado: (2019) -
Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug–drug links based on graph neural network
por: Cui, Chen, et al.
Publicado: (2021) -
Uncertainty quantification: Can we trust artificial intelligence in drug discovery?
por: Yu, Jie, et al.
Publicado: (2022) -
Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors
por: Zhou, Nannan, et al.
Publicado: (2015) -
Drug target inference by mining transcriptional data using a novel graph convolutional network framework
por: Zhong, Feisheng, et al.
Publicado: (2021)