Cargando…

KCNQ variants and pain modulation: a missense variant in Kv7.3 contributes to pain resilience

There is a pressing need for understanding of factors that confer resilience to pain. Gain-of-function mutations in sodium channel Nav1.7 produce hyperexcitability of dorsal root ganglion neurons underlying inherited erythromelalgia, a human genetic model of neuropathic pain. While most individuals...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Jun-Hui, Estacion, Mark, Mis, Malgorzata A, Tanaka, Brian S, Schulman, Betsy R, Chen, Lubin, Liu, Shujun, Dib-Hajj, Fadia B, Dib-Hajj, Sulayman D, Waxman, Stephen G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454204/
https://www.ncbi.nlm.nih.gov/pubmed/34557669
http://dx.doi.org/10.1093/braincomms/fcab212
Descripción
Sumario:There is a pressing need for understanding of factors that confer resilience to pain. Gain-of-function mutations in sodium channel Nav1.7 produce hyperexcitability of dorsal root ganglion neurons underlying inherited erythromelalgia, a human genetic model of neuropathic pain. While most individuals with erythromelalgia experience excruciating pain, occasional outliers report more moderate pain. These differences in pain profiles in blood-related erythromelalgia subjects carrying the same pain-causative Nav1.7 mutation and markedly different pain experience provide a unique opportunity to investigate potential genetic factors that contribute to inter-individual variability in pain. We studied a patient with inherited erythromelalgia and a Nav1.7 mutation (c.4345T>G, p. F1449V) with severe pain as is characteristic of most inherited erythromelalgia patients, and her mother who carries the same Nav1.7 mutation with a milder pain phenotype. Detailed six-week daily pain diaries of pain episodes confirmed their distinct pain profiles. Electrophysiological studies on subject-specific induced pluripotent stem cell-derived sensory neurons from each of these patients showed that the excitability of these cells paralleled their pain phenotype. Whole-exome sequencing identified a missense variant (c.2263C>T, p. D755N) in KCNQ3 (Kv7.3) in the pain resilient mother. Voltage-clamp recordings showed that co-expression of Kv7.2-wild type (WT)/Kv7.3-D755N channels produced larger M-currents than that of Kv7.2-WT/Kv7.3-WT. The difference in excitability of the patient-specific induced pluripotent stem cell-derived sensory neurons was mimicked by modulating M-current levels using the dynamic clamp and a model of the mutant Kv7.2-WT/Kv7.3-D755N channels. These results show that a ‘pain-in-a-dish’ model can be used to explicate genetic contributors to pain, and confirm that KCNQ variants can confer pain resilience via an effect on peripheral sensory neurons.