Cargando…
A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children
BACKGROUND: Prolonged Emergency Department (ED) stay causes crowding and negatively impacts quality of care. We developed and validated a prediction model for early identification of febrile children with a high risk of hospitalisation in order to improve ED flow. METHODS: The MOFICHE study prospect...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454797/ https://www.ncbi.nlm.nih.gov/pubmed/34557857 http://dx.doi.org/10.1016/j.lanepe.2021.100173 |
_version_ | 1784570556700426240 |
---|---|
author | Borensztajn, Dorine M. Hagedoorn, Nienke N. Carrol, Enitan D. von Both, Ulrich Dewez, Juan Emmanuel Emonts, Marieke van der Flier, Michiel de Groot, Ronald Herberg, Jethro Kohlmaier, Benno Lim, Emma Maconochie, Ian K. Martinon-Torres, Federico Nieboer, Daan Nijman, Ruud G. Oostenbrink, Rianne Pokorn, Marko Calle, Irene Rivero Strle, Franc Tsolia, Maria Vermont, Clementien L. Yeung, Shunmay Zavadska, Dace Zenz, Werner Levin, Michael Moll, Henriette A. |
author_facet | Borensztajn, Dorine M. Hagedoorn, Nienke N. Carrol, Enitan D. von Both, Ulrich Dewez, Juan Emmanuel Emonts, Marieke van der Flier, Michiel de Groot, Ronald Herberg, Jethro Kohlmaier, Benno Lim, Emma Maconochie, Ian K. Martinon-Torres, Federico Nieboer, Daan Nijman, Ruud G. Oostenbrink, Rianne Pokorn, Marko Calle, Irene Rivero Strle, Franc Tsolia, Maria Vermont, Clementien L. Yeung, Shunmay Zavadska, Dace Zenz, Werner Levin, Michael Moll, Henriette A. |
author_sort | Borensztajn, Dorine M. |
collection | PubMed |
description | BACKGROUND: Prolonged Emergency Department (ED) stay causes crowding and negatively impacts quality of care. We developed and validated a prediction model for early identification of febrile children with a high risk of hospitalisation in order to improve ED flow. METHODS: The MOFICHE study prospectively collected data on febrile children (0–18 years) presenting to 12 European EDs. A prediction models was constructed using multivariable logistic regression and included patient characteristics available at triage. We determined the discriminative values of the model by calculating the area under the receiver operating curve (AUC). FINDINGS: Of 38,424 paediatric encounters, 9,735 children were admitted to the ward and 157 to the PICU. The prediction model, combining patient characteristics and NICE alarming, yielded an AUC of 0.84 (95%CI 0.83-0.84). The model performed well for a rule-in threshold of 75% (specificity 99.0% (95%CI 98.9-99.1%, positive likelihood ratio 15.1 (95%CI 13.4-17.1), positive predictive value 0.84 (95%CI 0.82-0.86)) and a rule-out threshold of 7.5% (sensitivity 95.4% (95%CI 95.0-95.8), negative likelihood ratio 0.15 (95%CI 0.14-0.16), negative predictive value 0..95 (95%CI 0.95-9.96)). Validation in a separate dataset showed an excellent AUC of 0.91 (95%CI 0.90- 0.93). The model performed well for identifying children needing PICU admission (AUC 0.95, 95%CI 0.93-0.97). A digital calculator was developed to facilitate clinical use. INTERPRETATION: Patient characteristics and NICE alarming signs available at triage can be used to identify febrile children at high risk for hospitalisation and can be used to improve ED flow. FUNDING: European Union, NIHR, NHS. |
format | Online Article Text |
id | pubmed-8454797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-84547972021-09-22 A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children Borensztajn, Dorine M. Hagedoorn, Nienke N. Carrol, Enitan D. von Both, Ulrich Dewez, Juan Emmanuel Emonts, Marieke van der Flier, Michiel de Groot, Ronald Herberg, Jethro Kohlmaier, Benno Lim, Emma Maconochie, Ian K. Martinon-Torres, Federico Nieboer, Daan Nijman, Ruud G. Oostenbrink, Rianne Pokorn, Marko Calle, Irene Rivero Strle, Franc Tsolia, Maria Vermont, Clementien L. Yeung, Shunmay Zavadska, Dace Zenz, Werner Levin, Michael Moll, Henriette A. Lancet Reg Health Eur Research Paper BACKGROUND: Prolonged Emergency Department (ED) stay causes crowding and negatively impacts quality of care. We developed and validated a prediction model for early identification of febrile children with a high risk of hospitalisation in order to improve ED flow. METHODS: The MOFICHE study prospectively collected data on febrile children (0–18 years) presenting to 12 European EDs. A prediction models was constructed using multivariable logistic regression and included patient characteristics available at triage. We determined the discriminative values of the model by calculating the area under the receiver operating curve (AUC). FINDINGS: Of 38,424 paediatric encounters, 9,735 children were admitted to the ward and 157 to the PICU. The prediction model, combining patient characteristics and NICE alarming, yielded an AUC of 0.84 (95%CI 0.83-0.84). The model performed well for a rule-in threshold of 75% (specificity 99.0% (95%CI 98.9-99.1%, positive likelihood ratio 15.1 (95%CI 13.4-17.1), positive predictive value 0.84 (95%CI 0.82-0.86)) and a rule-out threshold of 7.5% (sensitivity 95.4% (95%CI 95.0-95.8), negative likelihood ratio 0.15 (95%CI 0.14-0.16), negative predictive value 0..95 (95%CI 0.95-9.96)). Validation in a separate dataset showed an excellent AUC of 0.91 (95%CI 0.90- 0.93). The model performed well for identifying children needing PICU admission (AUC 0.95, 95%CI 0.93-0.97). A digital calculator was developed to facilitate clinical use. INTERPRETATION: Patient characteristics and NICE alarming signs available at triage can be used to identify febrile children at high risk for hospitalisation and can be used to improve ED flow. FUNDING: European Union, NIHR, NHS. Elsevier 2021-07-12 /pmc/articles/PMC8454797/ /pubmed/34557857 http://dx.doi.org/10.1016/j.lanepe.2021.100173 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Borensztajn, Dorine M. Hagedoorn, Nienke N. Carrol, Enitan D. von Both, Ulrich Dewez, Juan Emmanuel Emonts, Marieke van der Flier, Michiel de Groot, Ronald Herberg, Jethro Kohlmaier, Benno Lim, Emma Maconochie, Ian K. Martinon-Torres, Federico Nieboer, Daan Nijman, Ruud G. Oostenbrink, Rianne Pokorn, Marko Calle, Irene Rivero Strle, Franc Tsolia, Maria Vermont, Clementien L. Yeung, Shunmay Zavadska, Dace Zenz, Werner Levin, Michael Moll, Henriette A. A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children |
title | A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children |
title_full | A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children |
title_fullStr | A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children |
title_full_unstemmed | A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children |
title_short | A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children |
title_sort | nice combination for predicting hospitalisation at the emergency department: a european multicentre observational study of febrile children |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454797/ https://www.ncbi.nlm.nih.gov/pubmed/34557857 http://dx.doi.org/10.1016/j.lanepe.2021.100173 |
work_keys_str_mv | AT borensztajndorinem anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT hagedoornnienken anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT carrolenitand anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT vonbothulrich anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT dewezjuanemmanuel anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT emontsmarieke anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT vanderfliermichiel anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT degrootronald anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT herbergjethro anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT kohlmaierbenno anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT limemma anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT maconochieiank anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT martinontorresfederico anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT nieboerdaan anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT nijmanruudg anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT oostenbrinkrianne anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT pokornmarko anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT calleirenerivero anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT strlefranc anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT tsoliamaria anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT vermontclementienl anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT yeungshunmay anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT zavadskadace anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT zenzwerner anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT levinmichael anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT mollhenriettea anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT borensztajndorinem nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT hagedoornnienken nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT carrolenitand nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT vonbothulrich nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT dewezjuanemmanuel nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT emontsmarieke nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT vanderfliermichiel nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT degrootronald nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT herbergjethro nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT kohlmaierbenno nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT limemma nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT maconochieiank nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT martinontorresfederico nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT nieboerdaan nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT nijmanruudg nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT oostenbrinkrianne nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT pokornmarko nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT calleirenerivero nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT strlefranc nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT tsoliamaria nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT vermontclementienl nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT yeungshunmay nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT zavadskadace nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT zenzwerner nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT levinmichael nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT mollhenriettea nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren AT nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren |