Cargando…

A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children

BACKGROUND: Prolonged Emergency Department (ED) stay causes crowding and negatively impacts quality of care. We developed and validated a prediction model for early identification of febrile children with a high risk of hospitalisation in order to improve ED flow. METHODS: The MOFICHE study prospect...

Descripción completa

Detalles Bibliográficos
Autores principales: Borensztajn, Dorine M., Hagedoorn, Nienke N., Carrol, Enitan D., von Both, Ulrich, Dewez, Juan Emmanuel, Emonts, Marieke, van der Flier, Michiel, de Groot, Ronald, Herberg, Jethro, Kohlmaier, Benno, Lim, Emma, Maconochie, Ian K., Martinon-Torres, Federico, Nieboer, Daan, Nijman, Ruud G., Oostenbrink, Rianne, Pokorn, Marko, Calle, Irene Rivero, Strle, Franc, Tsolia, Maria, Vermont, Clementien L., Yeung, Shunmay, Zavadska, Dace, Zenz, Werner, Levin, Michael, Moll, Henriette A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454797/
https://www.ncbi.nlm.nih.gov/pubmed/34557857
http://dx.doi.org/10.1016/j.lanepe.2021.100173
_version_ 1784570556700426240
author Borensztajn, Dorine M.
Hagedoorn, Nienke N.
Carrol, Enitan D.
von Both, Ulrich
Dewez, Juan Emmanuel
Emonts, Marieke
van der Flier, Michiel
de Groot, Ronald
Herberg, Jethro
Kohlmaier, Benno
Lim, Emma
Maconochie, Ian K.
Martinon-Torres, Federico
Nieboer, Daan
Nijman, Ruud G.
Oostenbrink, Rianne
Pokorn, Marko
Calle, Irene Rivero
Strle, Franc
Tsolia, Maria
Vermont, Clementien L.
Yeung, Shunmay
Zavadska, Dace
Zenz, Werner
Levin, Michael
Moll, Henriette A.
author_facet Borensztajn, Dorine M.
Hagedoorn, Nienke N.
Carrol, Enitan D.
von Both, Ulrich
Dewez, Juan Emmanuel
Emonts, Marieke
van der Flier, Michiel
de Groot, Ronald
Herberg, Jethro
Kohlmaier, Benno
Lim, Emma
Maconochie, Ian K.
Martinon-Torres, Federico
Nieboer, Daan
Nijman, Ruud G.
Oostenbrink, Rianne
Pokorn, Marko
Calle, Irene Rivero
Strle, Franc
Tsolia, Maria
Vermont, Clementien L.
Yeung, Shunmay
Zavadska, Dace
Zenz, Werner
Levin, Michael
Moll, Henriette A.
author_sort Borensztajn, Dorine M.
collection PubMed
description BACKGROUND: Prolonged Emergency Department (ED) stay causes crowding and negatively impacts quality of care. We developed and validated a prediction model for early identification of febrile children with a high risk of hospitalisation in order to improve ED flow. METHODS: The MOFICHE study prospectively collected data on febrile children (0–18 years) presenting to 12 European EDs. A prediction models was constructed using multivariable logistic regression and included patient characteristics available at triage. We determined the discriminative values of the model by calculating the area under the receiver operating curve (AUC). FINDINGS: Of 38,424 paediatric encounters, 9,735 children were admitted to the ward and 157 to the PICU. The prediction model, combining patient characteristics and NICE alarming, yielded an AUC of 0.84 (95%CI 0.83-0.84). The model performed well for a rule-in threshold of 75% (specificity 99.0% (95%CI 98.9-99.1%, positive likelihood ratio 15.1 (95%CI 13.4-17.1), positive predictive value 0.84 (95%CI 0.82-0.86)) and a rule-out threshold of 7.5% (sensitivity 95.4% (95%CI 95.0-95.8), negative likelihood ratio 0.15 (95%CI 0.14-0.16), negative predictive value 0..95 (95%CI 0.95-9.96)). Validation in a separate dataset showed an excellent AUC of 0.91 (95%CI 0.90- 0.93). The model performed well for identifying children needing PICU admission (AUC 0.95, 95%CI 0.93-0.97). A digital calculator was developed to facilitate clinical use. INTERPRETATION: Patient characteristics and NICE alarming signs available at triage can be used to identify febrile children at high risk for hospitalisation and can be used to improve ED flow. FUNDING: European Union, NIHR, NHS.
format Online
Article
Text
id pubmed-8454797
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-84547972021-09-22 A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children Borensztajn, Dorine M. Hagedoorn, Nienke N. Carrol, Enitan D. von Both, Ulrich Dewez, Juan Emmanuel Emonts, Marieke van der Flier, Michiel de Groot, Ronald Herberg, Jethro Kohlmaier, Benno Lim, Emma Maconochie, Ian K. Martinon-Torres, Federico Nieboer, Daan Nijman, Ruud G. Oostenbrink, Rianne Pokorn, Marko Calle, Irene Rivero Strle, Franc Tsolia, Maria Vermont, Clementien L. Yeung, Shunmay Zavadska, Dace Zenz, Werner Levin, Michael Moll, Henriette A. Lancet Reg Health Eur Research Paper BACKGROUND: Prolonged Emergency Department (ED) stay causes crowding and negatively impacts quality of care. We developed and validated a prediction model for early identification of febrile children with a high risk of hospitalisation in order to improve ED flow. METHODS: The MOFICHE study prospectively collected data on febrile children (0–18 years) presenting to 12 European EDs. A prediction models was constructed using multivariable logistic regression and included patient characteristics available at triage. We determined the discriminative values of the model by calculating the area under the receiver operating curve (AUC). FINDINGS: Of 38,424 paediatric encounters, 9,735 children were admitted to the ward and 157 to the PICU. The prediction model, combining patient characteristics and NICE alarming, yielded an AUC of 0.84 (95%CI 0.83-0.84). The model performed well for a rule-in threshold of 75% (specificity 99.0% (95%CI 98.9-99.1%, positive likelihood ratio 15.1 (95%CI 13.4-17.1), positive predictive value 0.84 (95%CI 0.82-0.86)) and a rule-out threshold of 7.5% (sensitivity 95.4% (95%CI 95.0-95.8), negative likelihood ratio 0.15 (95%CI 0.14-0.16), negative predictive value 0..95 (95%CI 0.95-9.96)). Validation in a separate dataset showed an excellent AUC of 0.91 (95%CI 0.90- 0.93). The model performed well for identifying children needing PICU admission (AUC 0.95, 95%CI 0.93-0.97). A digital calculator was developed to facilitate clinical use. INTERPRETATION: Patient characteristics and NICE alarming signs available at triage can be used to identify febrile children at high risk for hospitalisation and can be used to improve ED flow. FUNDING: European Union, NIHR, NHS. Elsevier 2021-07-12 /pmc/articles/PMC8454797/ /pubmed/34557857 http://dx.doi.org/10.1016/j.lanepe.2021.100173 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Borensztajn, Dorine M.
Hagedoorn, Nienke N.
Carrol, Enitan D.
von Both, Ulrich
Dewez, Juan Emmanuel
Emonts, Marieke
van der Flier, Michiel
de Groot, Ronald
Herberg, Jethro
Kohlmaier, Benno
Lim, Emma
Maconochie, Ian K.
Martinon-Torres, Federico
Nieboer, Daan
Nijman, Ruud G.
Oostenbrink, Rianne
Pokorn, Marko
Calle, Irene Rivero
Strle, Franc
Tsolia, Maria
Vermont, Clementien L.
Yeung, Shunmay
Zavadska, Dace
Zenz, Werner
Levin, Michael
Moll, Henriette A.
A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children
title A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children
title_full A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children
title_fullStr A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children
title_full_unstemmed A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children
title_short A NICE combination for predicting hospitalisation at the Emergency Department: a European multicentre observational study of febrile children
title_sort nice combination for predicting hospitalisation at the emergency department: a european multicentre observational study of febrile children
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454797/
https://www.ncbi.nlm.nih.gov/pubmed/34557857
http://dx.doi.org/10.1016/j.lanepe.2021.100173
work_keys_str_mv AT borensztajndorinem anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT hagedoornnienken anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT carrolenitand anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT vonbothulrich anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT dewezjuanemmanuel anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT emontsmarieke anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT vanderfliermichiel anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT degrootronald anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT herbergjethro anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT kohlmaierbenno anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT limemma anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT maconochieiank anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT martinontorresfederico anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT nieboerdaan anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT nijmanruudg anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT oostenbrinkrianne anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT pokornmarko anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT calleirenerivero anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT strlefranc anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT tsoliamaria anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT vermontclementienl anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT yeungshunmay anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT zavadskadace anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT zenzwerner anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT levinmichael anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT mollhenriettea anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT anicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT borensztajndorinem nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT hagedoornnienken nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT carrolenitand nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT vonbothulrich nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT dewezjuanemmanuel nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT emontsmarieke nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT vanderfliermichiel nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT degrootronald nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT herbergjethro nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT kohlmaierbenno nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT limemma nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT maconochieiank nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT martinontorresfederico nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT nieboerdaan nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT nijmanruudg nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT oostenbrinkrianne nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT pokornmarko nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT calleirenerivero nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT strlefranc nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT tsoliamaria nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT vermontclementienl nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT yeungshunmay nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT zavadskadace nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT zenzwerner nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT levinmichael nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT mollhenriettea nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren
AT nicecombinationforpredictinghospitalisationattheemergencydepartmentaeuropeanmulticentreobservationalstudyoffebrilechildren