Cargando…
Unsupervised cross-lingual model transfer for named entity recognition with contextualized word representations
Named entity recognition (NER) is one fundamental task in the natural language processing (NLP) community. Supervised neural network models based on contextualized word representations can achieve highly-competitive performance, which requires a large-scale manually-annotated corpus for training. Wh...
Autores principales: | Yan, Huijiong, Qian, Tao, Xie, Liang, Chen, Shanguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454935/ https://www.ncbi.nlm.nih.gov/pubmed/34547014 http://dx.doi.org/10.1371/journal.pone.0257230 |
Ejemplares similares
-
Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization
por: Rivera-Zavala, Renzo M., et al.
Publicado: (2021) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
por: Munkhdalai, Tsendsuren, et al.
Publicado: (2015) -
Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization
por: Taillé, Bruno, et al.
Publicado: (2020) -
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
por: Zhang, Yaoyun, et al.
Publicado: (2016)