Cargando…
Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm
Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind’s insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455132/ https://www.ncbi.nlm.nih.gov/pubmed/34544548 http://dx.doi.org/10.7554/eLife.68874 |
_version_ | 1784570609653514240 |
---|---|
author | Seal, Srijan Dharmarajan, Guha Khan, Imroze |
author_facet | Seal, Srijan Dharmarajan, Guha Khan, Imroze |
author_sort | Seal, Srijan |
collection | PubMed |
description | Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind’s insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild. |
format | Online Article Text |
id | pubmed-8455132 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-84551322021-09-23 Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm Seal, Srijan Dharmarajan, Guha Khan, Imroze eLife Evolutionary Biology Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind’s insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild. eLife Sciences Publications, Ltd 2021-09-21 /pmc/articles/PMC8455132/ /pubmed/34544548 http://dx.doi.org/10.7554/eLife.68874 Text en © 2021, Seal et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Evolutionary Biology Seal, Srijan Dharmarajan, Guha Khan, Imroze Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm |
title | Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm |
title_full | Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm |
title_fullStr | Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm |
title_full_unstemmed | Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm |
title_short | Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm |
title_sort | evolution of pathogen tolerance and emerging infections: a missing experimental paradigm |
topic | Evolutionary Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455132/ https://www.ncbi.nlm.nih.gov/pubmed/34544548 http://dx.doi.org/10.7554/eLife.68874 |
work_keys_str_mv | AT sealsrijan evolutionofpathogentoleranceandemerginginfectionsamissingexperimentalparadigm AT dharmarajanguha evolutionofpathogentoleranceandemerginginfectionsamissingexperimentalparadigm AT khanimroze evolutionofpathogentoleranceandemerginginfectionsamissingexperimentalparadigm |