Cargando…

Deep transfer learning based classification model for covid-19 using chest CT-scans

COVID-19 is an infectious and contagious virus. As of this writing, more than 160 million people have been infected since its emergence, including more than 125,000 in Algeria. In this work, We first collected a dataset of 4986 COVID and non-COVID images confirmed by RT-PCR tests at Tlemcen hospital...

Descripción completa

Detalles Bibliográficos
Autores principales: LAHSAINI, Ilyas, EL HABIB DAHO, Mostafa, CHIKH, Mohamed Amine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455169/
https://www.ncbi.nlm.nih.gov/pubmed/34566222
http://dx.doi.org/10.1016/j.patrec.2021.08.035
Descripción
Sumario:COVID-19 is an infectious and contagious virus. As of this writing, more than 160 million people have been infected since its emergence, including more than 125,000 in Algeria. In this work, We first collected a dataset of 4986 COVID and non-COVID images confirmed by RT-PCR tests at Tlemcen hospital in Algeria. Then we performed a transfer learning on deep learning models that got the best results on the ImageNet dataset, such as DenseNet121, DenseNet201, VGG16, VGG19, Inception Resnet-V2, and Xception, in order to conduct a comparative study. Therefore, We have proposed an explainable model based on the DenseNet201 architecture and the GradCam explanation algorithm to detect COVID-19 in chest CT images and explain the output decision. Experiments have shown promising results and proven that the introduced model can be beneficial for diagnosing and following up patients with COVID-19.