Cargando…
Association of Low Molecular Weight Plasma Aminothiols with the Severity of Coronavirus Disease 2019
OBJECTIVE: Aminothiols (glutathione (GSH), cysteinylglycine (CG)) may play an important role in the pathogenesis of coronavirus disease 2019 (COVID-19), but the possible association of these indicators with the severity of COVID-19 has not yet been investigated. METHODS: The total content (t) and re...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455204/ https://www.ncbi.nlm.nih.gov/pubmed/34557267 http://dx.doi.org/10.1155/2021/9221693 |
Sumario: | OBJECTIVE: Aminothiols (glutathione (GSH), cysteinylglycine (CG)) may play an important role in the pathogenesis of coronavirus disease 2019 (COVID-19), but the possible association of these indicators with the severity of COVID-19 has not yet been investigated. METHODS: The total content (t) and reduced forms (r) of aminothiols were determined in patients with COVID-19 (n = 59) on admission. Lung injury was characterized by computed tomography (CT) findings in accordance with the CT0-4 classification. RESULTS: Low tGSH level was associated with the risk of severe COVID-19 (tGSH ≤ 1.5 μM, mild vs. moderate/severe: risk ratio (RR) = 3.09, p = 0.007) and degree of lung damage (tGSH ≤ 1.8 μM, CT < 2 vs. CT ≥ 2: RR = 2.14, p = 0.0094). The rGSH level showed a negative association with D-dimer levels (ρ = −0.599, p = 0.014). Low rCG level was also associated with the risk of lung damage (rCG ≤ 1.3 μM, CT < 2 vs. CT ≥ 2: RR = 2.28, p = 0.001). Levels of rCG (ρ = −0.339, p = 0.012) and especially tCG (ρ = −0.551, p = 0.004) were negatively associated with platelet count. In addition, a significant relationship was found between the advanced oxidation protein product level and tGSH in patients with moderate or severe but not in patients with mild COVID-19. CONCLUSION: Thus, tGSH and rCG can be seen as potential markers for the risk of severe COVID-19. GSH appears to be an important factor to oxidative damage prevention as infection progresses. This suggests the potential clinical efficacy of correcting glutathione metabolism as an adjunct therapy for COVID-19. |
---|