Cargando…
Unsupervised Deep Learning based Variational Autoencoder Model for COVID-19 Diagnosis and Classification
At present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intelligence (AI) techniques including machine learning (ML), deep learning (DL), and comput...
Autores principales: | Mansour, Romany F., Escorcia-Gutierrez, José, Gamarra, Margarita, Gupta, Deepak, Castillo, Oscar, Kumar, Sachin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455283/ https://www.ncbi.nlm.nih.gov/pubmed/34566223 http://dx.doi.org/10.1016/j.patrec.2021.08.018 |
Ejemplares similares
-
Investigating Beta-Variational Convolutional Autoencoders for the Unsupervised Classification of Chest Pneumonia
por: Akila, Serag Mohamed, et al.
Publicado: (2023) -
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
por: Sajadi, Seyedeh Zahra, et al.
Publicado: (2021) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer
por: Ye, Qing, et al.
Publicado: (2021) -
Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission
por: Chen, Yitong, et al.
Publicado: (2023)