Cargando…
Achieving broad absorption band and high incident angles by stochastically-distributed oblique-flat-sheet metamaterial perfect absorbers
In this work, we integrated a periodic seed layer and oblique deposition method to fabricate a stochastically-distributed oblique-flat-sheet metamaterial perfect absorber (MPA). Such design could increase its absorption bandwidth and tolerance to high angle-incidence due to the fact that various obl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455548/ https://www.ncbi.nlm.nih.gov/pubmed/34548561 http://dx.doi.org/10.1038/s41598-021-98077-7 |
Sumario: | In this work, we integrated a periodic seed layer and oblique deposition method to fabricate a stochastically-distributed oblique-flat-sheet metamaterial perfect absorber (MPA). Such design could increase its absorption bandwidth and tolerance to high angle-incidence due to the fact that various oblique flat sheets offer different resonance conditions while even a single oblique flat sheet could provide different optical paths for resonance. On the other hand, a seed layer could reduce uncertainty regarding to direct oblique deposition and provide abilities to manipulate the bandwidth of the MPA. We also setup a simulation model in the aids of Visual Basic Application and examined the absorption behavior of the MPA under TM and TE oblique incidence that could achieve high absorbance under 80° and 60° incidence, respectively. Finally, in measurement, the fabricated sample owns 65% absorbance within 80–250 THz and over 90% absorbance within 250–320 THz at x-polarization normal incidence; as for the y-polarization normal incidence, we could achieve overall 70% absorbance within 80–300 THz. The measured results reveal similar tendency compared to the simulated ones. |
---|