Cargando…
Universal activation function for machine learning
This article proposes a universal activation function (UAF) that achieves near optimal performance in quantification, classification, and reinforcement learning (RL) problems. For any given problem, the gradient descent algorithms are able to evolve the UAF to a suitable activation function by tunin...
Autores principales: | Yuen, Brosnan, Hoang, Minh Tu, Dong, Xiaodai, Lu, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455573/ https://www.ncbi.nlm.nih.gov/pubmed/34548504 http://dx.doi.org/10.1038/s41598-021-96723-8 |
Ejemplares similares
-
Predicting the risk of osteoporosis in older Vietnamese women using machine learning approaches
por: Bui, Hanh My, et al.
Publicado: (2022) -
Epistemic cultures in complementary medicine: knowledge-making in university departments of osteopathy and Chinese medicine
por: Brosnan, Caragh
Publicado: (2016) -
Can Machine Learning Provide Understanding? How Cosmologists Use Machine Learning to Understand Observations of the Universe
por: Meskhidze, Helen
Publicado: (2021) -
Localization algorithms for asynchronous time difference of arrival positioning systems
por: He, Shuai, et al.
Publicado: (2017) -
Universal machine learning for the response of atomistic systems to external fields
por: Zhang, Yaolong, et al.
Publicado: (2023)