Cargando…

Topological heterogeneity and evaporation dynamics of irregular water droplets

Water droplets sitting between wires are ubiquitous in nature and industry, often showing irregular (non-spherical) droplet shapes. To understand their topological singularity and evaporation mechanism, measuring volume changes of irregular water droplets is essential but highly challenging for smal...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yeseul, Gonçalves, Marta, Kim, Deok-Ho, Weon, Byung Mook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455589/
https://www.ncbi.nlm.nih.gov/pubmed/34548520
http://dx.doi.org/10.1038/s41598-021-98115-4
Descripción
Sumario:Water droplets sitting between wires are ubiquitous in nature and industry, often showing irregular (non-spherical) droplet shapes. To understand their topological singularity and evaporation mechanism, measuring volume changes of irregular water droplets is essential but highly challenging for small-volume water droplets. Here we experimentally explore topological heterogeneity and evaporation dynamics for irregular water droplets between wires with four-dimensional X-ray microtomography that directly provides images in three spatial dimensions as a function of time, enabling us to get three-dimensional structural and geometric information changes with time. We find that the topological heterogeneity of an irregular droplet is due to the local contact lines and the evaporation dynamics of an irregular droplet is governed by the effective contact radius. This study may offer an opportunity to understand how the topological heterogeneity contributes to the evaporation dynamics of irregular water droplets.