Cargando…
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455628/ https://www.ncbi.nlm.nih.gov/pubmed/34548485 http://dx.doi.org/10.1038/s41467-021-25343-7 |
_version_ | 1784570710391259136 |
---|---|
author | Vasylenko, Andrij Gamon, Jacinthe Duff, Benjamin B. Gusev, Vladimir V. Daniels, Luke M. Zanella, Marco Shin, J. Felix Sharp, Paul M. Morscher, Alexandra Chen, Ruiyong Neale, Alex R. Hardwick, Laurence J. Claridge, John B. Blanc, Frédéric Gaultois, Michael W. Dyer, Matthew S. Rosseinsky, Matthew J. |
author_facet | Vasylenko, Andrij Gamon, Jacinthe Duff, Benjamin B. Gusev, Vladimir V. Daniels, Luke M. Zanella, Marco Shin, J. Felix Sharp, Paul M. Morscher, Alexandra Chen, Ruiyong Neale, Alex R. Hardwick, Laurence J. Claridge, John B. Blanc, Frédéric Gaultois, Michael W. Dyer, Matthew S. Rosseinsky, Matthew J. |
author_sort | Vasylenko, Andrij |
collection | PubMed |
description | The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood of finding a new crystalline material. Researchers make these choices based on their understanding of chemical structure and bonding. Extensive data are available on those element combinations that produce synthetically isolable materials, but it is difficult to assimilate the scale of this information to guide selection from the diversity of potential new chemistries. Here, we show that unsupervised machine learning captures the complex patterns of similarity between element combinations that afford reported crystalline inorganic materials. This model guides prioritisation of quaternary phase fields containing two anions for synthetic exploration to identify lithium solid electrolytes in a collaborative workflow that leads to the discovery of Li(3.3)SnS(3.3)Cl(0.7.) The interstitial site occupancy combination in this defect stuffed wurtzite enables a low-barrier ion transport pathway in hexagonal close-packing. |
format | Online Article Text |
id | pubmed-8455628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84556282021-10-07 Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry Vasylenko, Andrij Gamon, Jacinthe Duff, Benjamin B. Gusev, Vladimir V. Daniels, Luke M. Zanella, Marco Shin, J. Felix Sharp, Paul M. Morscher, Alexandra Chen, Ruiyong Neale, Alex R. Hardwick, Laurence J. Claridge, John B. Blanc, Frédéric Gaultois, Michael W. Dyer, Matthew S. Rosseinsky, Matthew J. Nat Commun Article The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood of finding a new crystalline material. Researchers make these choices based on their understanding of chemical structure and bonding. Extensive data are available on those element combinations that produce synthetically isolable materials, but it is difficult to assimilate the scale of this information to guide selection from the diversity of potential new chemistries. Here, we show that unsupervised machine learning captures the complex patterns of similarity between element combinations that afford reported crystalline inorganic materials. This model guides prioritisation of quaternary phase fields containing two anions for synthetic exploration to identify lithium solid electrolytes in a collaborative workflow that leads to the discovery of Li(3.3)SnS(3.3)Cl(0.7.) The interstitial site occupancy combination in this defect stuffed wurtzite enables a low-barrier ion transport pathway in hexagonal close-packing. Nature Publishing Group UK 2021-09-21 /pmc/articles/PMC8455628/ /pubmed/34548485 http://dx.doi.org/10.1038/s41467-021-25343-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Vasylenko, Andrij Gamon, Jacinthe Duff, Benjamin B. Gusev, Vladimir V. Daniels, Luke M. Zanella, Marco Shin, J. Felix Sharp, Paul M. Morscher, Alexandra Chen, Ruiyong Neale, Alex R. Hardwick, Laurence J. Claridge, John B. Blanc, Frédéric Gaultois, Michael W. Dyer, Matthew S. Rosseinsky, Matthew J. Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title | Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_full | Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_fullStr | Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_full_unstemmed | Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_short | Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
title_sort | element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455628/ https://www.ncbi.nlm.nih.gov/pubmed/34548485 http://dx.doi.org/10.1038/s41467-021-25343-7 |
work_keys_str_mv | AT vasylenkoandrij elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT gamonjacinthe elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT duffbenjaminb elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT gusevvladimirv elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT danielslukem elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT zanellamarco elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT shinjfelix elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT sharppaulm elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT morscheralexandra elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT chenruiyong elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT nealealexr elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT hardwicklaurencej elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT claridgejohnb elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT blancfrederic elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT gaultoismichaelw elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT dyermatthews elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry AT rosseinskymatthewj elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry |