Cargando…

Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry

The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood...

Descripción completa

Detalles Bibliográficos
Autores principales: Vasylenko, Andrij, Gamon, Jacinthe, Duff, Benjamin B., Gusev, Vladimir V., Daniels, Luke M., Zanella, Marco, Shin, J. Felix, Sharp, Paul M., Morscher, Alexandra, Chen, Ruiyong, Neale, Alex R., Hardwick, Laurence J., Claridge, John B., Blanc, Frédéric, Gaultois, Michael W., Dyer, Matthew S., Rosseinsky, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455628/
https://www.ncbi.nlm.nih.gov/pubmed/34548485
http://dx.doi.org/10.1038/s41467-021-25343-7
_version_ 1784570710391259136
author Vasylenko, Andrij
Gamon, Jacinthe
Duff, Benjamin B.
Gusev, Vladimir V.
Daniels, Luke M.
Zanella, Marco
Shin, J. Felix
Sharp, Paul M.
Morscher, Alexandra
Chen, Ruiyong
Neale, Alex R.
Hardwick, Laurence J.
Claridge, John B.
Blanc, Frédéric
Gaultois, Michael W.
Dyer, Matthew S.
Rosseinsky, Matthew J.
author_facet Vasylenko, Andrij
Gamon, Jacinthe
Duff, Benjamin B.
Gusev, Vladimir V.
Daniels, Luke M.
Zanella, Marco
Shin, J. Felix
Sharp, Paul M.
Morscher, Alexandra
Chen, Ruiyong
Neale, Alex R.
Hardwick, Laurence J.
Claridge, John B.
Blanc, Frédéric
Gaultois, Michael W.
Dyer, Matthew S.
Rosseinsky, Matthew J.
author_sort Vasylenko, Andrij
collection PubMed
description The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood of finding a new crystalline material. Researchers make these choices based on their understanding of chemical structure and bonding. Extensive data are available on those element combinations that produce synthetically isolable materials, but it is difficult to assimilate the scale of this information to guide selection from the diversity of potential new chemistries. Here, we show that unsupervised machine learning captures the complex patterns of similarity between element combinations that afford reported crystalline inorganic materials. This model guides prioritisation of quaternary phase fields containing two anions for synthetic exploration to identify lithium solid electrolytes in a collaborative workflow that leads to the discovery of Li(3.3)SnS(3.3)Cl(0.7.) The interstitial site occupancy combination in this defect stuffed wurtzite enables a low-barrier ion transport pathway in hexagonal close-packing.
format Online
Article
Text
id pubmed-8455628
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84556282021-10-07 Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry Vasylenko, Andrij Gamon, Jacinthe Duff, Benjamin B. Gusev, Vladimir V. Daniels, Luke M. Zanella, Marco Shin, J. Felix Sharp, Paul M. Morscher, Alexandra Chen, Ruiyong Neale, Alex R. Hardwick, Laurence J. Claridge, John B. Blanc, Frédéric Gaultois, Michael W. Dyer, Matthew S. Rosseinsky, Matthew J. Nat Commun Article The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood of finding a new crystalline material. Researchers make these choices based on their understanding of chemical structure and bonding. Extensive data are available on those element combinations that produce synthetically isolable materials, but it is difficult to assimilate the scale of this information to guide selection from the diversity of potential new chemistries. Here, we show that unsupervised machine learning captures the complex patterns of similarity between element combinations that afford reported crystalline inorganic materials. This model guides prioritisation of quaternary phase fields containing two anions for synthetic exploration to identify lithium solid electrolytes in a collaborative workflow that leads to the discovery of Li(3.3)SnS(3.3)Cl(0.7.) The interstitial site occupancy combination in this defect stuffed wurtzite enables a low-barrier ion transport pathway in hexagonal close-packing. Nature Publishing Group UK 2021-09-21 /pmc/articles/PMC8455628/ /pubmed/34548485 http://dx.doi.org/10.1038/s41467-021-25343-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Vasylenko, Andrij
Gamon, Jacinthe
Duff, Benjamin B.
Gusev, Vladimir V.
Daniels, Luke M.
Zanella, Marco
Shin, J. Felix
Sharp, Paul M.
Morscher, Alexandra
Chen, Ruiyong
Neale, Alex R.
Hardwick, Laurence J.
Claridge, John B.
Blanc, Frédéric
Gaultois, Michael W.
Dyer, Matthew S.
Rosseinsky, Matthew J.
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_full Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_fullStr Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_full_unstemmed Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_short Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
title_sort element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455628/
https://www.ncbi.nlm.nih.gov/pubmed/34548485
http://dx.doi.org/10.1038/s41467-021-25343-7
work_keys_str_mv AT vasylenkoandrij elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT gamonjacinthe elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT duffbenjaminb elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT gusevvladimirv elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT danielslukem elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT zanellamarco elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT shinjfelix elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT sharppaulm elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT morscheralexandra elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT chenruiyong elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT nealealexr elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT hardwicklaurencej elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT claridgejohnb elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT blancfrederic elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT gaultoismichaelw elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT dyermatthews elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry
AT rosseinskymatthewj elementselectionforcrystallineinorganicsoliddiscoveryguidedbyunsupervisedmachinelearningofexperimentallyexploredchemistry