Cargando…
Use of metamodels for rapid discovery of narrow bandgap oxide photocatalysts
New photocatalysts are traditionally identified through trial-and-error methods. Machine learning has shown considerable promise for improving the efficiency of photocatalyst discovery from a large potential pool. Here, we describe a multi-step, target-driven consensus method using a stacking meta-l...
Autores principales: | Mai, Haoxin, Le, Tu C., Hisatomi, Takashi, Chen, Dehong, Domen, Kazunari, Winkler, David A., Caruso, Rachel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455646/ https://www.ncbi.nlm.nih.gov/pubmed/34585115 http://dx.doi.org/10.1016/j.isci.2021.103068 |
Ejemplares similares
-
Transition-metal (oxy)nitride photocatalysts for water splitting
por: Chen, Kaihong, et al.
Publicado: (2023) -
Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture
por: Mai, Haoxin, et al.
Publicado: (2022) -
The simulation metamodel
por: Friedman, Linda Weiser
Publicado: (1996) -
Metamodelling for software engineering
por: Gonzalez Perez, Cesar, et al.
Publicado: (2008) -
Origin of observed narrow bandgap of mica nanosheets
por: Wu, Shunnian, et al.
Publicado: (2022)