Cargando…
A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
Foliar fungicide usage in soybeans in the north-central United States increased steadily over the past two decades. An agronomically-interpretable machine learning framework was used to understand the importance of foliar fungicides relative to other factors associated with realized soybean yields,...
Autores principales: | Shah, Denis A., Butts, Thomas R., Mourtzinis, Spyridon, Rattalino Edreira, Juan I., Grassini, Patricio, Conley, Shawn P., Esker, Paul D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455673/ https://www.ncbi.nlm.nih.gov/pubmed/34548572 http://dx.doi.org/10.1038/s41598-021-98230-2 |
Ejemplares similares
-
Modeling the relationship between estimated fungicide use and disease-associated yield losses of soybean in the United States I: Foliar fungicides vs foliar diseases
por: Bandara, Ananda Y., et al.
Publicado: (2020) -
Modeling the relationship between estimated fungicide use and disease-associated yield losses of soybean in the United States II: Seed-applied fungicides vs seedling diseases
por: Bandara, Ananda Y., et al.
Publicado: (2020) -
Advancing agricultural research using machine learning algorithms
por: Mourtzinis, Spyridon, et al.
Publicado: (2021) -
Defining Optimal Soybean Sowing Dates across the US
por: Mourtzinis, Spyridon, et al.
Publicado: (2019) -
Impact of urbanization trends on production of key staple crops
por: Andrade, José F., et al.
Publicado: (2021)