Cargando…

Molecular screening of ticks of the genus Amblyomma (Acari: Ixodidae) infesting South African reptiles with comments on their potential to act as vectors for Hepatozoon fitzsimonsi (Dias, 1953) (Adeleorina: Hepatozoidae)

In South Africa, the role of reptilian ticks in the transmission of haemoparasites is lacking, in part, due to limited information on tick diversity and their associated haemoparasites. The aim of this research was to identify tick species parasitizing reptiles and to molecularly screen these ectopa...

Descripción completa

Detalles Bibliográficos
Autores principales: Mofokeng, Lehlohonolo S., Smit, Nico J., Cook, Courtney A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455905/
https://www.ncbi.nlm.nih.gov/pubmed/34584839
http://dx.doi.org/10.1016/j.ijppaw.2021.09.005
Descripción
Sumario:In South Africa, the role of reptilian ticks in the transmission of haemoparasites is lacking, in part, due to limited information on tick diversity and their associated haemoparasites. The aim of this research was to identify tick species parasitizing reptiles and to molecularly screen these ectoparasites for species of the blood apicomplexan genus Hepatozoon. Samples were collected from Ndumo Game Reserve, KwaZulu-Natal, and the Cape Columbine region, Western Cape. Reptiles collected included 2 snakes, 2 monitor lizards of a single species respectively, as well as 17 tortoises of four species. Ticks collected from these were morphologically identified as Amblyomma latum (n = 2) and Amblyomma marmoreum (n = 98), this identification was molecularly confirmed using 16S rRNA and CO1 genes. Screening for Hepatozoon was done by amplifying the 18S rRNA gene. A species of Hepatozoon, Hepatozoon fitzsimonsi, was identified from A. marmoreum ticks, with an overall prevalence of 10%. This Hepatozoon species, has been described parasitizing tortoises from southern Africa, and has been reported from ticks infesting tortoises from Kenya, East Africa. Even though ticks have been suggested to be the likely vector of this Hepatozoon species, with this supported by the findings of Hepatozoon-like developmental stages in ticks collected off of infected tortoises, a recent systematic revision placed this species in a newly erected genus Bartazoon, a genus vectorised by biting insects. The present study thus provides further support for ticks acting as the potential vectors of H. fitzsimonsi.