Cargando…
Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach
A dynamical system entrains to a periodic input if its state converges globally to an attractor with the same period. In particular, for a constant input, the state converges to a unique equilibrium point for any initial condition. We consider the problem of maximizing a weighted average of the syst...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456142/ https://www.ncbi.nlm.nih.gov/pubmed/34567591 http://dx.doi.org/10.1098/rsos.210878 |
_version_ | 1784570818645196800 |
---|---|
author | Ali Al-Radhawi, M. Margaliot, Michael Sontag, Eduardo D. |
author_facet | Ali Al-Radhawi, M. Margaliot, Michael Sontag, Eduardo D. |
author_sort | Ali Al-Radhawi, M. |
collection | PubMed |
description | A dynamical system entrains to a periodic input if its state converges globally to an attractor with the same period. In particular, for a constant input, the state converges to a unique equilibrium point for any initial condition. We consider the problem of maximizing a weighted average of the system’s output along the periodic attractor. The gain of entrainment is the benefit achieved by using a non-constant periodic input relative to a constant input with the same time average. Such a problem amounts to optimal allocation of resources in a periodic manner. We formulate this problem as a periodic optimal control problem, which can be analysed by means of the Pontryagin maximum principle or solved numerically via powerful software packages. We then apply our framework to a class of nonlinear occupancy models that appear frequently in biological synthesis systems and other applications. We show that, perhaps surprisingly, constant inputs are optimal for various architectures. This suggests that the presence of non-constant periodic signals, which frequently appear in biological occupancy systems, is a signature of an underlying time-varying objective functional being optimized. |
format | Online Article Text |
id | pubmed-8456142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-84561422021-09-23 Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach Ali Al-Radhawi, M. Margaliot, Michael Sontag, Eduardo D. R Soc Open Sci Engineering A dynamical system entrains to a periodic input if its state converges globally to an attractor with the same period. In particular, for a constant input, the state converges to a unique equilibrium point for any initial condition. We consider the problem of maximizing a weighted average of the system’s output along the periodic attractor. The gain of entrainment is the benefit achieved by using a non-constant periodic input relative to a constant input with the same time average. Such a problem amounts to optimal allocation of resources in a periodic manner. We formulate this problem as a periodic optimal control problem, which can be analysed by means of the Pontryagin maximum principle or solved numerically via powerful software packages. We then apply our framework to a class of nonlinear occupancy models that appear frequently in biological synthesis systems and other applications. We show that, perhaps surprisingly, constant inputs are optimal for various architectures. This suggests that the presence of non-constant periodic signals, which frequently appear in biological occupancy systems, is a signature of an underlying time-varying objective functional being optimized. The Royal Society 2021-09-22 /pmc/articles/PMC8456142/ /pubmed/34567591 http://dx.doi.org/10.1098/rsos.210878 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Engineering Ali Al-Radhawi, M. Margaliot, Michael Sontag, Eduardo D. Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach |
title | Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach |
title_full | Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach |
title_fullStr | Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach |
title_full_unstemmed | Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach |
title_short | Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach |
title_sort | maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach |
topic | Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456142/ https://www.ncbi.nlm.nih.gov/pubmed/34567591 http://dx.doi.org/10.1098/rsos.210878 |
work_keys_str_mv | AT alialradhawim maximizingaveragethroughputinoscillatorybiochemicalsynthesissystemsanoptimalcontrolapproach AT margaliotmichael maximizingaveragethroughputinoscillatorybiochemicalsynthesissystemsanoptimalcontrolapproach AT sontageduardod maximizingaveragethroughputinoscillatorybiochemicalsynthesissystemsanoptimalcontrolapproach |