Cargando…
Deep GONet: self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data
BACKGROUND: With the rapid advancement of genomic sequencing techniques, massive production of gene expression data is becoming possible, which prompts the development of precision medicine. Deep learning is a promising approach for phenotype prediction (clinical diagnosis, prognosis, and drug respo...
Autores principales: | Bourgeais, Victoria, Zehraoui, Farida, Ben Hamdoune, Mohamed, Hanczar, Blaise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456586/ https://www.ncbi.nlm.nih.gov/pubmed/34551707 http://dx.doi.org/10.1186/s12859-021-04370-7 |
Ejemplares similares
-
Assessment of deep learning and transfer learning for cancer prediction based on gene expression data
por: Hanczar, Blaise, et al.
Publicado: (2022) -
Biological interpretation of deep neural network for phenotype prediction based on gene expression
por: Hanczar, Blaise, et al.
Publicado: (2020) -
A3SOM, abstained explainable semi-supervised neural network based on self-organizing map
por: Creux, Constance, et al.
Publicado: (2023) -
GOnet: a tool for interactive Gene Ontology analysis
por: Pomaznoy, Mikhail, et al.
Publicado: (2018) -
AttOmics: attention-based architecture for diagnosis and prognosis from omics data
por: Beaude, Aurélien, et al.
Publicado: (2023)