Cargando…
Predicting chemotherapy response using a variational autoencoder approach
BACKGROUND: Multiple studies have shown the utility of transcriptome-wide RNA-seq profiles as features for machine learning-based prediction of response to chemotherapy in cancer. While tumor transcriptome profiles are publicly available for thousands of tumors for many cancer types, a relatively mo...
Autores principales: | Wei, Qi, Ramsey, Stephen A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456615/ https://www.ncbi.nlm.nih.gov/pubmed/34551729 http://dx.doi.org/10.1186/s12859-021-04339-6 |
Ejemplares similares
-
Breast Cancer Induced Bone Osteolysis Prediction Using Temporal Variational Autoencoders
por: Xiong, Wei, et al.
Publicado: (2022) -
Predicting Aging of Brain Metabolic Topography Using Variational Autoencoder
por: Choi, Hongyoon, et al.
Publicado: (2018) -
Quantum Variational AutoEncoder
por: Vinci, Walter
Publicado: (2018) -
Variational Autoencoder for Generation of Antimicrobial
Peptides
por: Dean, Scott N., et al.
Publicado: (2020) -
Predicting chemical structure using reinforcement learning with a stack-augmented conditional variational autoencoder
por: Kim, Hwanhee, et al.
Publicado: (2022)