Cargando…

Suppression of CRLF1 promotes the chondrogenic differentiation of bone marrow-derived mesenchymal stem and protects cartilage tissue from damage in osteoarthritis via activation of miR-320

BACKGROUND: Osteoarthritis (OA) is the most prevalent chronic joint disease, and is hard to be cured at present. Cytokine receptor-like factor 1 (CRLF1) has been identified as an upregulated gene in OA cartilage. However, the precise identities and functions of CRLF1 in OA progression have remained...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hao, Ding, Changrong, Guo, Cuicui, Xiang, Shuai, Wang, Yingzhen, Luo, Bing, Xiang, Hongfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456664/
https://www.ncbi.nlm.nih.gov/pubmed/34551709
http://dx.doi.org/10.1186/s10020-021-00369-1
Descripción
Sumario:BACKGROUND: Osteoarthritis (OA) is the most prevalent chronic joint disease, and is hard to be cured at present. Cytokine receptor-like factor 1 (CRLF1) has been identified as an upregulated gene in OA cartilage. However, the precise identities and functions of CRLF1 in OA progression have remained to be fully elucidated. METHODS: We used a murine model of injury-induced OA (destabilization of medial meniscus, DMM) and BMSCs to investigate the specific biological functions and mechanisms of CRLF1. RESULTS: We found that CRLF1 was significantly increased in the DMM surgery-induced OA model and was down-regulated during chondrogenic differentiation of BMSCs. Luciferase reporter assays showed that CRLF1 was a direct target of miR-320 in BMSCs. miR-320 can reverse the effect of CRLF1 on cell proliferation, apoptosis and chondrogenic differentiation of BMSCs. Furthermore, knockdown of CRLF1 or over-expression of miR-320 can inhibit the apoptosis of primary chondrocytes. CONCLUSION: Suppression of CRLF1 promotes the chondrogenic differentiation of BMSCs and protects cartilage tissue from damage in osteoarthritis via activation of miR-320.