Cargando…

Frequency drift in MR spectroscopy at 3T

PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B(0) field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real...

Descripción completa

Detalles Bibliográficos
Autores principales: Hui, Steve C.N., Mikkelsen, Mark, Zöllner, Helge J., Ahluwalia, Vishwadeep, Alcauter, Sarael, Baltusis, Laima, Barany, Deborah A., Barlow, Laura R., Becker, Robert, Berman, Jeffrey I., Berrington, Adam, Bhattacharyya, Pallab K., Blicher, Jakob Udby, Bogner, Wolfgang, Brown, Mark S., Calhoun, Vince D., Castillo, Ryan, Cecil, Kim M., Choi, Yeo Bi, Chu, Winnie C.W., Clarke, William T., Craven, Alexander R., Cuypers, Koen, Dacko, Michael, de la Fuente-Sandoval, Camilo, Desmond, Patricia, Domagalik, Aleksandra, Dumont, Julien, Duncan, Niall W., Dydak, Ulrike, Dyke, Katherine, Edmondson, David A., Ende, Gabriele, Ersland, Lars, Evans, C. John, Fermin, Alan S.R., Ferretti, Antonio, Fillmer, Ariane, Gong, Tao, Greenhouse, Ian, Grist, James T., Gu, Meng, Harris, Ashley D., Hat, Katarzyna, Heba, Stefanie, Heckova, Eva, Hegarty, John P., Heise, Kirstin-Friederike, Honda, Shiori, Jacobson, Aaron, Jansen, Jacobus F.A., Jenkins, Christopher W., Johnston, Stephen J., Juchem, Christoph, Kangarlu, Alayar, Kerr, Adam B., Landheer, Karl, Lange, Thomas, Lee, Phil, Levendovszky, Swati Rane, Limperopoulos, Catherine, Liu, Feng, Lloyd, William, Lythgoe, David J., Machizawa, Maro G., MacMillan, Erin L., Maddock, Richard J., Manzhurtsev, Andrei V., Martinez-Gudino, María L., Miller, Jack J., Mirzakhanian, Heline, Moreno-Ortega, Marta, Mullins, Paul G., Nakajima, Shinichiro, Near, Jamie, Noeske, Ralph, Nordhøy, Wibeke, Oeltzschner, Georg, Osorio-Duran, Raul, Otaduy, Maria C.G., Pasaye, Erick H., Peeters, Ronald, Peltier, Scott J., Pilatus, Ulrich, Polomac, Nenad, Porges, Eric C., Pradhan, Subechhya, Prisciandaro, James Joseph, Puts, Nicolaas A, Rae, Caroline D., Reyes-Madrigal, Francisco, Roberts, Timothy P.L., Robertson, Caroline E., Rosenberg, Jens T., Rotaru, Diana-Georgiana, O'Gorman Tuura, Ruth L, Saleh, Muhammad G., Sandberg, Kristian, Sangill, Ryan, Schembri, Keith, Schrantee, Anouk, Semenova, Natalia A., Singel, Debra, Sitnikov, Rouslan, Smith, Jolinda, Song, Yulu, Stark, Craig, Stoffers, Diederick, Swinnen, Stephan P., Tain, Rongwen, Tanase, Costin, Tapper, Sofie, Tegenthoff, Martin, Thiel, Thomas, Thioux, Marc, Truong, Peter, van Dijk, Pim, Vella, Nolan, Vidyasagar, Rishma, Vovk, Andrej, Wang, Guangbin, Westlye, Lars T., Wilbur, Timothy K., Willoughby, William R., Wilson, Martin, Wittsack, Hans-Jörg, Woods, Adam J., Wu, Yen-Chien, Xu, Junqian, Lopez, Maria Yanez, Yeung, David K.W., Zhao, Qun, Zhou, Xiaopeng, Zupan, Gasper, Edden, Richard A.E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456751/
https://www.ncbi.nlm.nih.gov/pubmed/34314848
http://dx.doi.org/10.1016/j.neuroimage.2021.118430
_version_ 1784570930944540672
author Hui, Steve C.N.
Mikkelsen, Mark
Zöllner, Helge J.
Ahluwalia, Vishwadeep
Alcauter, Sarael
Baltusis, Laima
Barany, Deborah A.
Barlow, Laura R.
Becker, Robert
Berman, Jeffrey I.
Berrington, Adam
Bhattacharyya, Pallab K.
Blicher, Jakob Udby
Bogner, Wolfgang
Brown, Mark S.
Calhoun, Vince D.
Castillo, Ryan
Cecil, Kim M.
Choi, Yeo Bi
Chu, Winnie C.W.
Clarke, William T.
Craven, Alexander R.
Cuypers, Koen
Dacko, Michael
de la Fuente-Sandoval, Camilo
Desmond, Patricia
Domagalik, Aleksandra
Dumont, Julien
Duncan, Niall W.
Dydak, Ulrike
Dyke, Katherine
Edmondson, David A.
Ende, Gabriele
Ersland, Lars
Evans, C. John
Fermin, Alan S.R.
Ferretti, Antonio
Fillmer, Ariane
Gong, Tao
Greenhouse, Ian
Grist, James T.
Gu, Meng
Harris, Ashley D.
Hat, Katarzyna
Heba, Stefanie
Heckova, Eva
Hegarty, John P.
Heise, Kirstin-Friederike
Honda, Shiori
Jacobson, Aaron
Jansen, Jacobus F.A.
Jenkins, Christopher W.
Johnston, Stephen J.
Juchem, Christoph
Kangarlu, Alayar
Kerr, Adam B.
Landheer, Karl
Lange, Thomas
Lee, Phil
Levendovszky, Swati Rane
Limperopoulos, Catherine
Liu, Feng
Lloyd, William
Lythgoe, David J.
Machizawa, Maro G.
MacMillan, Erin L.
Maddock, Richard J.
Manzhurtsev, Andrei V.
Martinez-Gudino, María L.
Miller, Jack J.
Mirzakhanian, Heline
Moreno-Ortega, Marta
Mullins, Paul G.
Nakajima, Shinichiro
Near, Jamie
Noeske, Ralph
Nordhøy, Wibeke
Oeltzschner, Georg
Osorio-Duran, Raul
Otaduy, Maria C.G.
Pasaye, Erick H.
Peeters, Ronald
Peltier, Scott J.
Pilatus, Ulrich
Polomac, Nenad
Porges, Eric C.
Pradhan, Subechhya
Prisciandaro, James Joseph
Puts, Nicolaas A
Rae, Caroline D.
Reyes-Madrigal, Francisco
Roberts, Timothy P.L.
Robertson, Caroline E.
Rosenberg, Jens T.
Rotaru, Diana-Georgiana
O'Gorman Tuura, Ruth L
Saleh, Muhammad G.
Sandberg, Kristian
Sangill, Ryan
Schembri, Keith
Schrantee, Anouk
Semenova, Natalia A.
Singel, Debra
Sitnikov, Rouslan
Smith, Jolinda
Song, Yulu
Stark, Craig
Stoffers, Diederick
Swinnen, Stephan P.
Tain, Rongwen
Tanase, Costin
Tapper, Sofie
Tegenthoff, Martin
Thiel, Thomas
Thioux, Marc
Truong, Peter
van Dijk, Pim
Vella, Nolan
Vidyasagar, Rishma
Vovk, Andrej
Wang, Guangbin
Westlye, Lars T.
Wilbur, Timothy K.
Willoughby, William R.
Wilson, Martin
Wittsack, Hans-Jörg
Woods, Adam J.
Wu, Yen-Chien
Xu, Junqian
Lopez, Maria Yanez
Yeung, David K.W.
Zhao, Qun
Zhou, Xiaopeng
Zupan, Gasper
Edden, Richard A.E.
author_facet Hui, Steve C.N.
Mikkelsen, Mark
Zöllner, Helge J.
Ahluwalia, Vishwadeep
Alcauter, Sarael
Baltusis, Laima
Barany, Deborah A.
Barlow, Laura R.
Becker, Robert
Berman, Jeffrey I.
Berrington, Adam
Bhattacharyya, Pallab K.
Blicher, Jakob Udby
Bogner, Wolfgang
Brown, Mark S.
Calhoun, Vince D.
Castillo, Ryan
Cecil, Kim M.
Choi, Yeo Bi
Chu, Winnie C.W.
Clarke, William T.
Craven, Alexander R.
Cuypers, Koen
Dacko, Michael
de la Fuente-Sandoval, Camilo
Desmond, Patricia
Domagalik, Aleksandra
Dumont, Julien
Duncan, Niall W.
Dydak, Ulrike
Dyke, Katherine
Edmondson, David A.
Ende, Gabriele
Ersland, Lars
Evans, C. John
Fermin, Alan S.R.
Ferretti, Antonio
Fillmer, Ariane
Gong, Tao
Greenhouse, Ian
Grist, James T.
Gu, Meng
Harris, Ashley D.
Hat, Katarzyna
Heba, Stefanie
Heckova, Eva
Hegarty, John P.
Heise, Kirstin-Friederike
Honda, Shiori
Jacobson, Aaron
Jansen, Jacobus F.A.
Jenkins, Christopher W.
Johnston, Stephen J.
Juchem, Christoph
Kangarlu, Alayar
Kerr, Adam B.
Landheer, Karl
Lange, Thomas
Lee, Phil
Levendovszky, Swati Rane
Limperopoulos, Catherine
Liu, Feng
Lloyd, William
Lythgoe, David J.
Machizawa, Maro G.
MacMillan, Erin L.
Maddock, Richard J.
Manzhurtsev, Andrei V.
Martinez-Gudino, María L.
Miller, Jack J.
Mirzakhanian, Heline
Moreno-Ortega, Marta
Mullins, Paul G.
Nakajima, Shinichiro
Near, Jamie
Noeske, Ralph
Nordhøy, Wibeke
Oeltzschner, Georg
Osorio-Duran, Raul
Otaduy, Maria C.G.
Pasaye, Erick H.
Peeters, Ronald
Peltier, Scott J.
Pilatus, Ulrich
Polomac, Nenad
Porges, Eric C.
Pradhan, Subechhya
Prisciandaro, James Joseph
Puts, Nicolaas A
Rae, Caroline D.
Reyes-Madrigal, Francisco
Roberts, Timothy P.L.
Robertson, Caroline E.
Rosenberg, Jens T.
Rotaru, Diana-Georgiana
O'Gorman Tuura, Ruth L
Saleh, Muhammad G.
Sandberg, Kristian
Sangill, Ryan
Schembri, Keith
Schrantee, Anouk
Semenova, Natalia A.
Singel, Debra
Sitnikov, Rouslan
Smith, Jolinda
Song, Yulu
Stark, Craig
Stoffers, Diederick
Swinnen, Stephan P.
Tain, Rongwen
Tanase, Costin
Tapper, Sofie
Tegenthoff, Martin
Thiel, Thomas
Thioux, Marc
Truong, Peter
van Dijk, Pim
Vella, Nolan
Vidyasagar, Rishma
Vovk, Andrej
Wang, Guangbin
Westlye, Lars T.
Wilbur, Timothy K.
Willoughby, William R.
Wilson, Martin
Wittsack, Hans-Jörg
Woods, Adam J.
Wu, Yen-Chien
Xu, Junqian
Lopez, Maria Yanez
Yeung, David K.W.
Zhao, Qun
Zhou, Xiaopeng
Zupan, Gasper
Edden, Richard A.E.
author_sort Hui, Steve C.N.
collection PubMed
description PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B(0) field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.
format Online
Article
Text
id pubmed-8456751
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-84567512021-11-01 Frequency drift in MR spectroscopy at 3T Hui, Steve C.N. Mikkelsen, Mark Zöllner, Helge J. Ahluwalia, Vishwadeep Alcauter, Sarael Baltusis, Laima Barany, Deborah A. Barlow, Laura R. Becker, Robert Berman, Jeffrey I. Berrington, Adam Bhattacharyya, Pallab K. Blicher, Jakob Udby Bogner, Wolfgang Brown, Mark S. Calhoun, Vince D. Castillo, Ryan Cecil, Kim M. Choi, Yeo Bi Chu, Winnie C.W. Clarke, William T. Craven, Alexander R. Cuypers, Koen Dacko, Michael de la Fuente-Sandoval, Camilo Desmond, Patricia Domagalik, Aleksandra Dumont, Julien Duncan, Niall W. Dydak, Ulrike Dyke, Katherine Edmondson, David A. Ende, Gabriele Ersland, Lars Evans, C. John Fermin, Alan S.R. Ferretti, Antonio Fillmer, Ariane Gong, Tao Greenhouse, Ian Grist, James T. Gu, Meng Harris, Ashley D. Hat, Katarzyna Heba, Stefanie Heckova, Eva Hegarty, John P. Heise, Kirstin-Friederike Honda, Shiori Jacobson, Aaron Jansen, Jacobus F.A. Jenkins, Christopher W. Johnston, Stephen J. Juchem, Christoph Kangarlu, Alayar Kerr, Adam B. Landheer, Karl Lange, Thomas Lee, Phil Levendovszky, Swati Rane Limperopoulos, Catherine Liu, Feng Lloyd, William Lythgoe, David J. Machizawa, Maro G. MacMillan, Erin L. Maddock, Richard J. Manzhurtsev, Andrei V. Martinez-Gudino, María L. Miller, Jack J. Mirzakhanian, Heline Moreno-Ortega, Marta Mullins, Paul G. Nakajima, Shinichiro Near, Jamie Noeske, Ralph Nordhøy, Wibeke Oeltzschner, Georg Osorio-Duran, Raul Otaduy, Maria C.G. Pasaye, Erick H. Peeters, Ronald Peltier, Scott J. Pilatus, Ulrich Polomac, Nenad Porges, Eric C. Pradhan, Subechhya Prisciandaro, James Joseph Puts, Nicolaas A Rae, Caroline D. Reyes-Madrigal, Francisco Roberts, Timothy P.L. Robertson, Caroline E. Rosenberg, Jens T. Rotaru, Diana-Georgiana O'Gorman Tuura, Ruth L Saleh, Muhammad G. Sandberg, Kristian Sangill, Ryan Schembri, Keith Schrantee, Anouk Semenova, Natalia A. Singel, Debra Sitnikov, Rouslan Smith, Jolinda Song, Yulu Stark, Craig Stoffers, Diederick Swinnen, Stephan P. Tain, Rongwen Tanase, Costin Tapper, Sofie Tegenthoff, Martin Thiel, Thomas Thioux, Marc Truong, Peter van Dijk, Pim Vella, Nolan Vidyasagar, Rishma Vovk, Andrej Wang, Guangbin Westlye, Lars T. Wilbur, Timothy K. Willoughby, William R. Wilson, Martin Wittsack, Hans-Jörg Woods, Adam J. Wu, Yen-Chien Xu, Junqian Lopez, Maria Yanez Yeung, David K.W. Zhao, Qun Zhou, Xiaopeng Zupan, Gasper Edden, Richard A.E. Neuroimage Article PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B(0) field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed. Academic Press 2021-11-01 /pmc/articles/PMC8456751/ /pubmed/34314848 http://dx.doi.org/10.1016/j.neuroimage.2021.118430 Text en © 2021 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Hui, Steve C.N.
Mikkelsen, Mark
Zöllner, Helge J.
Ahluwalia, Vishwadeep
Alcauter, Sarael
Baltusis, Laima
Barany, Deborah A.
Barlow, Laura R.
Becker, Robert
Berman, Jeffrey I.
Berrington, Adam
Bhattacharyya, Pallab K.
Blicher, Jakob Udby
Bogner, Wolfgang
Brown, Mark S.
Calhoun, Vince D.
Castillo, Ryan
Cecil, Kim M.
Choi, Yeo Bi
Chu, Winnie C.W.
Clarke, William T.
Craven, Alexander R.
Cuypers, Koen
Dacko, Michael
de la Fuente-Sandoval, Camilo
Desmond, Patricia
Domagalik, Aleksandra
Dumont, Julien
Duncan, Niall W.
Dydak, Ulrike
Dyke, Katherine
Edmondson, David A.
Ende, Gabriele
Ersland, Lars
Evans, C. John
Fermin, Alan S.R.
Ferretti, Antonio
Fillmer, Ariane
Gong, Tao
Greenhouse, Ian
Grist, James T.
Gu, Meng
Harris, Ashley D.
Hat, Katarzyna
Heba, Stefanie
Heckova, Eva
Hegarty, John P.
Heise, Kirstin-Friederike
Honda, Shiori
Jacobson, Aaron
Jansen, Jacobus F.A.
Jenkins, Christopher W.
Johnston, Stephen J.
Juchem, Christoph
Kangarlu, Alayar
Kerr, Adam B.
Landheer, Karl
Lange, Thomas
Lee, Phil
Levendovszky, Swati Rane
Limperopoulos, Catherine
Liu, Feng
Lloyd, William
Lythgoe, David J.
Machizawa, Maro G.
MacMillan, Erin L.
Maddock, Richard J.
Manzhurtsev, Andrei V.
Martinez-Gudino, María L.
Miller, Jack J.
Mirzakhanian, Heline
Moreno-Ortega, Marta
Mullins, Paul G.
Nakajima, Shinichiro
Near, Jamie
Noeske, Ralph
Nordhøy, Wibeke
Oeltzschner, Georg
Osorio-Duran, Raul
Otaduy, Maria C.G.
Pasaye, Erick H.
Peeters, Ronald
Peltier, Scott J.
Pilatus, Ulrich
Polomac, Nenad
Porges, Eric C.
Pradhan, Subechhya
Prisciandaro, James Joseph
Puts, Nicolaas A
Rae, Caroline D.
Reyes-Madrigal, Francisco
Roberts, Timothy P.L.
Robertson, Caroline E.
Rosenberg, Jens T.
Rotaru, Diana-Georgiana
O'Gorman Tuura, Ruth L
Saleh, Muhammad G.
Sandberg, Kristian
Sangill, Ryan
Schembri, Keith
Schrantee, Anouk
Semenova, Natalia A.
Singel, Debra
Sitnikov, Rouslan
Smith, Jolinda
Song, Yulu
Stark, Craig
Stoffers, Diederick
Swinnen, Stephan P.
Tain, Rongwen
Tanase, Costin
Tapper, Sofie
Tegenthoff, Martin
Thiel, Thomas
Thioux, Marc
Truong, Peter
van Dijk, Pim
Vella, Nolan
Vidyasagar, Rishma
Vovk, Andrej
Wang, Guangbin
Westlye, Lars T.
Wilbur, Timothy K.
Willoughby, William R.
Wilson, Martin
Wittsack, Hans-Jörg
Woods, Adam J.
Wu, Yen-Chien
Xu, Junqian
Lopez, Maria Yanez
Yeung, David K.W.
Zhao, Qun
Zhou, Xiaopeng
Zupan, Gasper
Edden, Richard A.E.
Frequency drift in MR spectroscopy at 3T
title Frequency drift in MR spectroscopy at 3T
title_full Frequency drift in MR spectroscopy at 3T
title_fullStr Frequency drift in MR spectroscopy at 3T
title_full_unstemmed Frequency drift in MR spectroscopy at 3T
title_short Frequency drift in MR spectroscopy at 3T
title_sort frequency drift in mr spectroscopy at 3t
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456751/
https://www.ncbi.nlm.nih.gov/pubmed/34314848
http://dx.doi.org/10.1016/j.neuroimage.2021.118430
work_keys_str_mv AT huistevecn frequencydriftinmrspectroscopyat3t
AT mikkelsenmark frequencydriftinmrspectroscopyat3t
AT zollnerhelgej frequencydriftinmrspectroscopyat3t
AT ahluwaliavishwadeep frequencydriftinmrspectroscopyat3t
AT alcautersarael frequencydriftinmrspectroscopyat3t
AT baltusislaima frequencydriftinmrspectroscopyat3t
AT baranydeboraha frequencydriftinmrspectroscopyat3t
AT barlowlaurar frequencydriftinmrspectroscopyat3t
AT beckerrobert frequencydriftinmrspectroscopyat3t
AT bermanjeffreyi frequencydriftinmrspectroscopyat3t
AT berringtonadam frequencydriftinmrspectroscopyat3t
AT bhattacharyyapallabk frequencydriftinmrspectroscopyat3t
AT blicherjakobudby frequencydriftinmrspectroscopyat3t
AT bognerwolfgang frequencydriftinmrspectroscopyat3t
AT brownmarks frequencydriftinmrspectroscopyat3t
AT calhounvinced frequencydriftinmrspectroscopyat3t
AT castilloryan frequencydriftinmrspectroscopyat3t
AT cecilkimm frequencydriftinmrspectroscopyat3t
AT choiyeobi frequencydriftinmrspectroscopyat3t
AT chuwinniecw frequencydriftinmrspectroscopyat3t
AT clarkewilliamt frequencydriftinmrspectroscopyat3t
AT cravenalexanderr frequencydriftinmrspectroscopyat3t
AT cuyperskoen frequencydriftinmrspectroscopyat3t
AT dackomichael frequencydriftinmrspectroscopyat3t
AT delafuentesandovalcamilo frequencydriftinmrspectroscopyat3t
AT desmondpatricia frequencydriftinmrspectroscopyat3t
AT domagalikaleksandra frequencydriftinmrspectroscopyat3t
AT dumontjulien frequencydriftinmrspectroscopyat3t
AT duncanniallw frequencydriftinmrspectroscopyat3t
AT dydakulrike frequencydriftinmrspectroscopyat3t
AT dykekatherine frequencydriftinmrspectroscopyat3t
AT edmondsondavida frequencydriftinmrspectroscopyat3t
AT endegabriele frequencydriftinmrspectroscopyat3t
AT erslandlars frequencydriftinmrspectroscopyat3t
AT evanscjohn frequencydriftinmrspectroscopyat3t
AT ferminalansr frequencydriftinmrspectroscopyat3t
AT ferrettiantonio frequencydriftinmrspectroscopyat3t
AT fillmerariane frequencydriftinmrspectroscopyat3t
AT gongtao frequencydriftinmrspectroscopyat3t
AT greenhouseian frequencydriftinmrspectroscopyat3t
AT gristjamest frequencydriftinmrspectroscopyat3t
AT gumeng frequencydriftinmrspectroscopyat3t
AT harrisashleyd frequencydriftinmrspectroscopyat3t
AT hatkatarzyna frequencydriftinmrspectroscopyat3t
AT hebastefanie frequencydriftinmrspectroscopyat3t
AT heckovaeva frequencydriftinmrspectroscopyat3t
AT hegartyjohnp frequencydriftinmrspectroscopyat3t
AT heisekirstinfriederike frequencydriftinmrspectroscopyat3t
AT hondashiori frequencydriftinmrspectroscopyat3t
AT jacobsonaaron frequencydriftinmrspectroscopyat3t
AT jansenjacobusfa frequencydriftinmrspectroscopyat3t
AT jenkinschristopherw frequencydriftinmrspectroscopyat3t
AT johnstonstephenj frequencydriftinmrspectroscopyat3t
AT juchemchristoph frequencydriftinmrspectroscopyat3t
AT kangarlualayar frequencydriftinmrspectroscopyat3t
AT kerradamb frequencydriftinmrspectroscopyat3t
AT landheerkarl frequencydriftinmrspectroscopyat3t
AT langethomas frequencydriftinmrspectroscopyat3t
AT leephil frequencydriftinmrspectroscopyat3t
AT levendovszkyswatirane frequencydriftinmrspectroscopyat3t
AT limperopouloscatherine frequencydriftinmrspectroscopyat3t
AT liufeng frequencydriftinmrspectroscopyat3t
AT lloydwilliam frequencydriftinmrspectroscopyat3t
AT lythgoedavidj frequencydriftinmrspectroscopyat3t
AT machizawamarog frequencydriftinmrspectroscopyat3t
AT macmillanerinl frequencydriftinmrspectroscopyat3t
AT maddockrichardj frequencydriftinmrspectroscopyat3t
AT manzhurtsevandreiv frequencydriftinmrspectroscopyat3t
AT martinezgudinomarial frequencydriftinmrspectroscopyat3t
AT millerjackj frequencydriftinmrspectroscopyat3t
AT mirzakhanianheline frequencydriftinmrspectroscopyat3t
AT morenoortegamarta frequencydriftinmrspectroscopyat3t
AT mullinspaulg frequencydriftinmrspectroscopyat3t
AT nakajimashinichiro frequencydriftinmrspectroscopyat3t
AT nearjamie frequencydriftinmrspectroscopyat3t
AT noeskeralph frequencydriftinmrspectroscopyat3t
AT nordhøywibeke frequencydriftinmrspectroscopyat3t
AT oeltzschnergeorg frequencydriftinmrspectroscopyat3t
AT osorioduranraul frequencydriftinmrspectroscopyat3t
AT otaduymariacg frequencydriftinmrspectroscopyat3t
AT pasayeerickh frequencydriftinmrspectroscopyat3t
AT peetersronald frequencydriftinmrspectroscopyat3t
AT peltierscottj frequencydriftinmrspectroscopyat3t
AT pilatusulrich frequencydriftinmrspectroscopyat3t
AT polomacnenad frequencydriftinmrspectroscopyat3t
AT porgesericc frequencydriftinmrspectroscopyat3t
AT pradhansubechhya frequencydriftinmrspectroscopyat3t
AT prisciandarojamesjoseph frequencydriftinmrspectroscopyat3t
AT putsnicolaasa frequencydriftinmrspectroscopyat3t
AT raecarolined frequencydriftinmrspectroscopyat3t
AT reyesmadrigalfrancisco frequencydriftinmrspectroscopyat3t
AT robertstimothypl frequencydriftinmrspectroscopyat3t
AT robertsoncarolinee frequencydriftinmrspectroscopyat3t
AT rosenbergjenst frequencydriftinmrspectroscopyat3t
AT rotarudianageorgiana frequencydriftinmrspectroscopyat3t
AT ogormantuuraruthl frequencydriftinmrspectroscopyat3t
AT salehmuhammadg frequencydriftinmrspectroscopyat3t
AT sandbergkristian frequencydriftinmrspectroscopyat3t
AT sangillryan frequencydriftinmrspectroscopyat3t
AT schembrikeith frequencydriftinmrspectroscopyat3t
AT schranteeanouk frequencydriftinmrspectroscopyat3t
AT semenovanataliaa frequencydriftinmrspectroscopyat3t
AT singeldebra frequencydriftinmrspectroscopyat3t
AT sitnikovrouslan frequencydriftinmrspectroscopyat3t
AT smithjolinda frequencydriftinmrspectroscopyat3t
AT songyulu frequencydriftinmrspectroscopyat3t
AT starkcraig frequencydriftinmrspectroscopyat3t
AT stoffersdiederick frequencydriftinmrspectroscopyat3t
AT swinnenstephanp frequencydriftinmrspectroscopyat3t
AT tainrongwen frequencydriftinmrspectroscopyat3t
AT tanasecostin frequencydriftinmrspectroscopyat3t
AT tappersofie frequencydriftinmrspectroscopyat3t
AT tegenthoffmartin frequencydriftinmrspectroscopyat3t
AT thielthomas frequencydriftinmrspectroscopyat3t
AT thiouxmarc frequencydriftinmrspectroscopyat3t
AT truongpeter frequencydriftinmrspectroscopyat3t
AT vandijkpim frequencydriftinmrspectroscopyat3t
AT vellanolan frequencydriftinmrspectroscopyat3t
AT vidyasagarrishma frequencydriftinmrspectroscopyat3t
AT vovkandrej frequencydriftinmrspectroscopyat3t
AT wangguangbin frequencydriftinmrspectroscopyat3t
AT westlyelarst frequencydriftinmrspectroscopyat3t
AT wilburtimothyk frequencydriftinmrspectroscopyat3t
AT willoughbywilliamr frequencydriftinmrspectroscopyat3t
AT wilsonmartin frequencydriftinmrspectroscopyat3t
AT wittsackhansjorg frequencydriftinmrspectroscopyat3t
AT woodsadamj frequencydriftinmrspectroscopyat3t
AT wuyenchien frequencydriftinmrspectroscopyat3t
AT xujunqian frequencydriftinmrspectroscopyat3t
AT lopezmariayanez frequencydriftinmrspectroscopyat3t
AT yeungdavidkw frequencydriftinmrspectroscopyat3t
AT zhaoqun frequencydriftinmrspectroscopyat3t
AT zhouxiaopeng frequencydriftinmrspectroscopyat3t
AT zupangasper frequencydriftinmrspectroscopyat3t
AT eddenrichardae frequencydriftinmrspectroscopyat3t