Cargando…
Frequency drift in MR spectroscopy at 3T
PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B(0) field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456751/ https://www.ncbi.nlm.nih.gov/pubmed/34314848 http://dx.doi.org/10.1016/j.neuroimage.2021.118430 |
_version_ | 1784570930944540672 |
---|---|
author | Hui, Steve C.N. Mikkelsen, Mark Zöllner, Helge J. Ahluwalia, Vishwadeep Alcauter, Sarael Baltusis, Laima Barany, Deborah A. Barlow, Laura R. Becker, Robert Berman, Jeffrey I. Berrington, Adam Bhattacharyya, Pallab K. Blicher, Jakob Udby Bogner, Wolfgang Brown, Mark S. Calhoun, Vince D. Castillo, Ryan Cecil, Kim M. Choi, Yeo Bi Chu, Winnie C.W. Clarke, William T. Craven, Alexander R. Cuypers, Koen Dacko, Michael de la Fuente-Sandoval, Camilo Desmond, Patricia Domagalik, Aleksandra Dumont, Julien Duncan, Niall W. Dydak, Ulrike Dyke, Katherine Edmondson, David A. Ende, Gabriele Ersland, Lars Evans, C. John Fermin, Alan S.R. Ferretti, Antonio Fillmer, Ariane Gong, Tao Greenhouse, Ian Grist, James T. Gu, Meng Harris, Ashley D. Hat, Katarzyna Heba, Stefanie Heckova, Eva Hegarty, John P. Heise, Kirstin-Friederike Honda, Shiori Jacobson, Aaron Jansen, Jacobus F.A. Jenkins, Christopher W. Johnston, Stephen J. Juchem, Christoph Kangarlu, Alayar Kerr, Adam B. Landheer, Karl Lange, Thomas Lee, Phil Levendovszky, Swati Rane Limperopoulos, Catherine Liu, Feng Lloyd, William Lythgoe, David J. Machizawa, Maro G. MacMillan, Erin L. Maddock, Richard J. Manzhurtsev, Andrei V. Martinez-Gudino, María L. Miller, Jack J. Mirzakhanian, Heline Moreno-Ortega, Marta Mullins, Paul G. Nakajima, Shinichiro Near, Jamie Noeske, Ralph Nordhøy, Wibeke Oeltzschner, Georg Osorio-Duran, Raul Otaduy, Maria C.G. Pasaye, Erick H. Peeters, Ronald Peltier, Scott J. Pilatus, Ulrich Polomac, Nenad Porges, Eric C. Pradhan, Subechhya Prisciandaro, James Joseph Puts, Nicolaas A Rae, Caroline D. Reyes-Madrigal, Francisco Roberts, Timothy P.L. Robertson, Caroline E. Rosenberg, Jens T. Rotaru, Diana-Georgiana O'Gorman Tuura, Ruth L Saleh, Muhammad G. Sandberg, Kristian Sangill, Ryan Schembri, Keith Schrantee, Anouk Semenova, Natalia A. Singel, Debra Sitnikov, Rouslan Smith, Jolinda Song, Yulu Stark, Craig Stoffers, Diederick Swinnen, Stephan P. Tain, Rongwen Tanase, Costin Tapper, Sofie Tegenthoff, Martin Thiel, Thomas Thioux, Marc Truong, Peter van Dijk, Pim Vella, Nolan Vidyasagar, Rishma Vovk, Andrej Wang, Guangbin Westlye, Lars T. Wilbur, Timothy K. Willoughby, William R. Wilson, Martin Wittsack, Hans-Jörg Woods, Adam J. Wu, Yen-Chien Xu, Junqian Lopez, Maria Yanez Yeung, David K.W. Zhao, Qun Zhou, Xiaopeng Zupan, Gasper Edden, Richard A.E. |
author_facet | Hui, Steve C.N. Mikkelsen, Mark Zöllner, Helge J. Ahluwalia, Vishwadeep Alcauter, Sarael Baltusis, Laima Barany, Deborah A. Barlow, Laura R. Becker, Robert Berman, Jeffrey I. Berrington, Adam Bhattacharyya, Pallab K. Blicher, Jakob Udby Bogner, Wolfgang Brown, Mark S. Calhoun, Vince D. Castillo, Ryan Cecil, Kim M. Choi, Yeo Bi Chu, Winnie C.W. Clarke, William T. Craven, Alexander R. Cuypers, Koen Dacko, Michael de la Fuente-Sandoval, Camilo Desmond, Patricia Domagalik, Aleksandra Dumont, Julien Duncan, Niall W. Dydak, Ulrike Dyke, Katherine Edmondson, David A. Ende, Gabriele Ersland, Lars Evans, C. John Fermin, Alan S.R. Ferretti, Antonio Fillmer, Ariane Gong, Tao Greenhouse, Ian Grist, James T. Gu, Meng Harris, Ashley D. Hat, Katarzyna Heba, Stefanie Heckova, Eva Hegarty, John P. Heise, Kirstin-Friederike Honda, Shiori Jacobson, Aaron Jansen, Jacobus F.A. Jenkins, Christopher W. Johnston, Stephen J. Juchem, Christoph Kangarlu, Alayar Kerr, Adam B. Landheer, Karl Lange, Thomas Lee, Phil Levendovszky, Swati Rane Limperopoulos, Catherine Liu, Feng Lloyd, William Lythgoe, David J. Machizawa, Maro G. MacMillan, Erin L. Maddock, Richard J. Manzhurtsev, Andrei V. Martinez-Gudino, María L. Miller, Jack J. Mirzakhanian, Heline Moreno-Ortega, Marta Mullins, Paul G. Nakajima, Shinichiro Near, Jamie Noeske, Ralph Nordhøy, Wibeke Oeltzschner, Georg Osorio-Duran, Raul Otaduy, Maria C.G. Pasaye, Erick H. Peeters, Ronald Peltier, Scott J. Pilatus, Ulrich Polomac, Nenad Porges, Eric C. Pradhan, Subechhya Prisciandaro, James Joseph Puts, Nicolaas A Rae, Caroline D. Reyes-Madrigal, Francisco Roberts, Timothy P.L. Robertson, Caroline E. Rosenberg, Jens T. Rotaru, Diana-Georgiana O'Gorman Tuura, Ruth L Saleh, Muhammad G. Sandberg, Kristian Sangill, Ryan Schembri, Keith Schrantee, Anouk Semenova, Natalia A. Singel, Debra Sitnikov, Rouslan Smith, Jolinda Song, Yulu Stark, Craig Stoffers, Diederick Swinnen, Stephan P. Tain, Rongwen Tanase, Costin Tapper, Sofie Tegenthoff, Martin Thiel, Thomas Thioux, Marc Truong, Peter van Dijk, Pim Vella, Nolan Vidyasagar, Rishma Vovk, Andrej Wang, Guangbin Westlye, Lars T. Wilbur, Timothy K. Willoughby, William R. Wilson, Martin Wittsack, Hans-Jörg Woods, Adam J. Wu, Yen-Chien Xu, Junqian Lopez, Maria Yanez Yeung, David K.W. Zhao, Qun Zhou, Xiaopeng Zupan, Gasper Edden, Richard A.E. |
author_sort | Hui, Steve C.N. |
collection | PubMed |
description | PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B(0) field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed. |
format | Online Article Text |
id | pubmed-8456751 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-84567512021-11-01 Frequency drift in MR spectroscopy at 3T Hui, Steve C.N. Mikkelsen, Mark Zöllner, Helge J. Ahluwalia, Vishwadeep Alcauter, Sarael Baltusis, Laima Barany, Deborah A. Barlow, Laura R. Becker, Robert Berman, Jeffrey I. Berrington, Adam Bhattacharyya, Pallab K. Blicher, Jakob Udby Bogner, Wolfgang Brown, Mark S. Calhoun, Vince D. Castillo, Ryan Cecil, Kim M. Choi, Yeo Bi Chu, Winnie C.W. Clarke, William T. Craven, Alexander R. Cuypers, Koen Dacko, Michael de la Fuente-Sandoval, Camilo Desmond, Patricia Domagalik, Aleksandra Dumont, Julien Duncan, Niall W. Dydak, Ulrike Dyke, Katherine Edmondson, David A. Ende, Gabriele Ersland, Lars Evans, C. John Fermin, Alan S.R. Ferretti, Antonio Fillmer, Ariane Gong, Tao Greenhouse, Ian Grist, James T. Gu, Meng Harris, Ashley D. Hat, Katarzyna Heba, Stefanie Heckova, Eva Hegarty, John P. Heise, Kirstin-Friederike Honda, Shiori Jacobson, Aaron Jansen, Jacobus F.A. Jenkins, Christopher W. Johnston, Stephen J. Juchem, Christoph Kangarlu, Alayar Kerr, Adam B. Landheer, Karl Lange, Thomas Lee, Phil Levendovszky, Swati Rane Limperopoulos, Catherine Liu, Feng Lloyd, William Lythgoe, David J. Machizawa, Maro G. MacMillan, Erin L. Maddock, Richard J. Manzhurtsev, Andrei V. Martinez-Gudino, María L. Miller, Jack J. Mirzakhanian, Heline Moreno-Ortega, Marta Mullins, Paul G. Nakajima, Shinichiro Near, Jamie Noeske, Ralph Nordhøy, Wibeke Oeltzschner, Georg Osorio-Duran, Raul Otaduy, Maria C.G. Pasaye, Erick H. Peeters, Ronald Peltier, Scott J. Pilatus, Ulrich Polomac, Nenad Porges, Eric C. Pradhan, Subechhya Prisciandaro, James Joseph Puts, Nicolaas A Rae, Caroline D. Reyes-Madrigal, Francisco Roberts, Timothy P.L. Robertson, Caroline E. Rosenberg, Jens T. Rotaru, Diana-Georgiana O'Gorman Tuura, Ruth L Saleh, Muhammad G. Sandberg, Kristian Sangill, Ryan Schembri, Keith Schrantee, Anouk Semenova, Natalia A. Singel, Debra Sitnikov, Rouslan Smith, Jolinda Song, Yulu Stark, Craig Stoffers, Diederick Swinnen, Stephan P. Tain, Rongwen Tanase, Costin Tapper, Sofie Tegenthoff, Martin Thiel, Thomas Thioux, Marc Truong, Peter van Dijk, Pim Vella, Nolan Vidyasagar, Rishma Vovk, Andrej Wang, Guangbin Westlye, Lars T. Wilbur, Timothy K. Willoughby, William R. Wilson, Martin Wittsack, Hans-Jörg Woods, Adam J. Wu, Yen-Chien Xu, Junqian Lopez, Maria Yanez Yeung, David K.W. Zhao, Qun Zhou, Xiaopeng Zupan, Gasper Edden, Richard A.E. Neuroimage Article PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B(0) field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed. Academic Press 2021-11-01 /pmc/articles/PMC8456751/ /pubmed/34314848 http://dx.doi.org/10.1016/j.neuroimage.2021.118430 Text en © 2021 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Hui, Steve C.N. Mikkelsen, Mark Zöllner, Helge J. Ahluwalia, Vishwadeep Alcauter, Sarael Baltusis, Laima Barany, Deborah A. Barlow, Laura R. Becker, Robert Berman, Jeffrey I. Berrington, Adam Bhattacharyya, Pallab K. Blicher, Jakob Udby Bogner, Wolfgang Brown, Mark S. Calhoun, Vince D. Castillo, Ryan Cecil, Kim M. Choi, Yeo Bi Chu, Winnie C.W. Clarke, William T. Craven, Alexander R. Cuypers, Koen Dacko, Michael de la Fuente-Sandoval, Camilo Desmond, Patricia Domagalik, Aleksandra Dumont, Julien Duncan, Niall W. Dydak, Ulrike Dyke, Katherine Edmondson, David A. Ende, Gabriele Ersland, Lars Evans, C. John Fermin, Alan S.R. Ferretti, Antonio Fillmer, Ariane Gong, Tao Greenhouse, Ian Grist, James T. Gu, Meng Harris, Ashley D. Hat, Katarzyna Heba, Stefanie Heckova, Eva Hegarty, John P. Heise, Kirstin-Friederike Honda, Shiori Jacobson, Aaron Jansen, Jacobus F.A. Jenkins, Christopher W. Johnston, Stephen J. Juchem, Christoph Kangarlu, Alayar Kerr, Adam B. Landheer, Karl Lange, Thomas Lee, Phil Levendovszky, Swati Rane Limperopoulos, Catherine Liu, Feng Lloyd, William Lythgoe, David J. Machizawa, Maro G. MacMillan, Erin L. Maddock, Richard J. Manzhurtsev, Andrei V. Martinez-Gudino, María L. Miller, Jack J. Mirzakhanian, Heline Moreno-Ortega, Marta Mullins, Paul G. Nakajima, Shinichiro Near, Jamie Noeske, Ralph Nordhøy, Wibeke Oeltzschner, Georg Osorio-Duran, Raul Otaduy, Maria C.G. Pasaye, Erick H. Peeters, Ronald Peltier, Scott J. Pilatus, Ulrich Polomac, Nenad Porges, Eric C. Pradhan, Subechhya Prisciandaro, James Joseph Puts, Nicolaas A Rae, Caroline D. Reyes-Madrigal, Francisco Roberts, Timothy P.L. Robertson, Caroline E. Rosenberg, Jens T. Rotaru, Diana-Georgiana O'Gorman Tuura, Ruth L Saleh, Muhammad G. Sandberg, Kristian Sangill, Ryan Schembri, Keith Schrantee, Anouk Semenova, Natalia A. Singel, Debra Sitnikov, Rouslan Smith, Jolinda Song, Yulu Stark, Craig Stoffers, Diederick Swinnen, Stephan P. Tain, Rongwen Tanase, Costin Tapper, Sofie Tegenthoff, Martin Thiel, Thomas Thioux, Marc Truong, Peter van Dijk, Pim Vella, Nolan Vidyasagar, Rishma Vovk, Andrej Wang, Guangbin Westlye, Lars T. Wilbur, Timothy K. Willoughby, William R. Wilson, Martin Wittsack, Hans-Jörg Woods, Adam J. Wu, Yen-Chien Xu, Junqian Lopez, Maria Yanez Yeung, David K.W. Zhao, Qun Zhou, Xiaopeng Zupan, Gasper Edden, Richard A.E. Frequency drift in MR spectroscopy at 3T |
title | Frequency drift in MR spectroscopy at 3T |
title_full | Frequency drift in MR spectroscopy at 3T |
title_fullStr | Frequency drift in MR spectroscopy at 3T |
title_full_unstemmed | Frequency drift in MR spectroscopy at 3T |
title_short | Frequency drift in MR spectroscopy at 3T |
title_sort | frequency drift in mr spectroscopy at 3t |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456751/ https://www.ncbi.nlm.nih.gov/pubmed/34314848 http://dx.doi.org/10.1016/j.neuroimage.2021.118430 |
work_keys_str_mv | AT huistevecn frequencydriftinmrspectroscopyat3t AT mikkelsenmark frequencydriftinmrspectroscopyat3t AT zollnerhelgej frequencydriftinmrspectroscopyat3t AT ahluwaliavishwadeep frequencydriftinmrspectroscopyat3t AT alcautersarael frequencydriftinmrspectroscopyat3t AT baltusislaima frequencydriftinmrspectroscopyat3t AT baranydeboraha frequencydriftinmrspectroscopyat3t AT barlowlaurar frequencydriftinmrspectroscopyat3t AT beckerrobert frequencydriftinmrspectroscopyat3t AT bermanjeffreyi frequencydriftinmrspectroscopyat3t AT berringtonadam frequencydriftinmrspectroscopyat3t AT bhattacharyyapallabk frequencydriftinmrspectroscopyat3t AT blicherjakobudby frequencydriftinmrspectroscopyat3t AT bognerwolfgang frequencydriftinmrspectroscopyat3t AT brownmarks frequencydriftinmrspectroscopyat3t AT calhounvinced frequencydriftinmrspectroscopyat3t AT castilloryan frequencydriftinmrspectroscopyat3t AT cecilkimm frequencydriftinmrspectroscopyat3t AT choiyeobi frequencydriftinmrspectroscopyat3t AT chuwinniecw frequencydriftinmrspectroscopyat3t AT clarkewilliamt frequencydriftinmrspectroscopyat3t AT cravenalexanderr frequencydriftinmrspectroscopyat3t AT cuyperskoen frequencydriftinmrspectroscopyat3t AT dackomichael frequencydriftinmrspectroscopyat3t AT delafuentesandovalcamilo frequencydriftinmrspectroscopyat3t AT desmondpatricia frequencydriftinmrspectroscopyat3t AT domagalikaleksandra frequencydriftinmrspectroscopyat3t AT dumontjulien frequencydriftinmrspectroscopyat3t AT duncanniallw frequencydriftinmrspectroscopyat3t AT dydakulrike frequencydriftinmrspectroscopyat3t AT dykekatherine frequencydriftinmrspectroscopyat3t AT edmondsondavida frequencydriftinmrspectroscopyat3t AT endegabriele frequencydriftinmrspectroscopyat3t AT erslandlars frequencydriftinmrspectroscopyat3t AT evanscjohn frequencydriftinmrspectroscopyat3t AT ferminalansr frequencydriftinmrspectroscopyat3t AT ferrettiantonio frequencydriftinmrspectroscopyat3t AT fillmerariane frequencydriftinmrspectroscopyat3t AT gongtao frequencydriftinmrspectroscopyat3t AT greenhouseian frequencydriftinmrspectroscopyat3t AT gristjamest frequencydriftinmrspectroscopyat3t AT gumeng frequencydriftinmrspectroscopyat3t AT harrisashleyd frequencydriftinmrspectroscopyat3t AT hatkatarzyna frequencydriftinmrspectroscopyat3t AT hebastefanie frequencydriftinmrspectroscopyat3t AT heckovaeva frequencydriftinmrspectroscopyat3t AT hegartyjohnp frequencydriftinmrspectroscopyat3t AT heisekirstinfriederike frequencydriftinmrspectroscopyat3t AT hondashiori frequencydriftinmrspectroscopyat3t AT jacobsonaaron frequencydriftinmrspectroscopyat3t AT jansenjacobusfa frequencydriftinmrspectroscopyat3t AT jenkinschristopherw frequencydriftinmrspectroscopyat3t AT johnstonstephenj frequencydriftinmrspectroscopyat3t AT juchemchristoph frequencydriftinmrspectroscopyat3t AT kangarlualayar frequencydriftinmrspectroscopyat3t AT kerradamb frequencydriftinmrspectroscopyat3t AT landheerkarl frequencydriftinmrspectroscopyat3t AT langethomas frequencydriftinmrspectroscopyat3t AT leephil frequencydriftinmrspectroscopyat3t AT levendovszkyswatirane frequencydriftinmrspectroscopyat3t AT limperopouloscatherine frequencydriftinmrspectroscopyat3t AT liufeng frequencydriftinmrspectroscopyat3t AT lloydwilliam frequencydriftinmrspectroscopyat3t AT lythgoedavidj frequencydriftinmrspectroscopyat3t AT machizawamarog frequencydriftinmrspectroscopyat3t AT macmillanerinl frequencydriftinmrspectroscopyat3t AT maddockrichardj frequencydriftinmrspectroscopyat3t AT manzhurtsevandreiv frequencydriftinmrspectroscopyat3t AT martinezgudinomarial frequencydriftinmrspectroscopyat3t AT millerjackj frequencydriftinmrspectroscopyat3t AT mirzakhanianheline frequencydriftinmrspectroscopyat3t AT morenoortegamarta frequencydriftinmrspectroscopyat3t AT mullinspaulg frequencydriftinmrspectroscopyat3t AT nakajimashinichiro frequencydriftinmrspectroscopyat3t AT nearjamie frequencydriftinmrspectroscopyat3t AT noeskeralph frequencydriftinmrspectroscopyat3t AT nordhøywibeke frequencydriftinmrspectroscopyat3t AT oeltzschnergeorg frequencydriftinmrspectroscopyat3t AT osorioduranraul frequencydriftinmrspectroscopyat3t AT otaduymariacg frequencydriftinmrspectroscopyat3t AT pasayeerickh frequencydriftinmrspectroscopyat3t AT peetersronald frequencydriftinmrspectroscopyat3t AT peltierscottj frequencydriftinmrspectroscopyat3t AT pilatusulrich frequencydriftinmrspectroscopyat3t AT polomacnenad frequencydriftinmrspectroscopyat3t AT porgesericc frequencydriftinmrspectroscopyat3t AT pradhansubechhya frequencydriftinmrspectroscopyat3t AT prisciandarojamesjoseph frequencydriftinmrspectroscopyat3t AT putsnicolaasa frequencydriftinmrspectroscopyat3t AT raecarolined frequencydriftinmrspectroscopyat3t AT reyesmadrigalfrancisco frequencydriftinmrspectroscopyat3t AT robertstimothypl frequencydriftinmrspectroscopyat3t AT robertsoncarolinee frequencydriftinmrspectroscopyat3t AT rosenbergjenst frequencydriftinmrspectroscopyat3t AT rotarudianageorgiana frequencydriftinmrspectroscopyat3t AT ogormantuuraruthl frequencydriftinmrspectroscopyat3t AT salehmuhammadg frequencydriftinmrspectroscopyat3t AT sandbergkristian frequencydriftinmrspectroscopyat3t AT sangillryan frequencydriftinmrspectroscopyat3t AT schembrikeith frequencydriftinmrspectroscopyat3t AT schranteeanouk frequencydriftinmrspectroscopyat3t AT semenovanataliaa frequencydriftinmrspectroscopyat3t AT singeldebra frequencydriftinmrspectroscopyat3t AT sitnikovrouslan frequencydriftinmrspectroscopyat3t AT smithjolinda frequencydriftinmrspectroscopyat3t AT songyulu frequencydriftinmrspectroscopyat3t AT starkcraig frequencydriftinmrspectroscopyat3t AT stoffersdiederick frequencydriftinmrspectroscopyat3t AT swinnenstephanp frequencydriftinmrspectroscopyat3t AT tainrongwen frequencydriftinmrspectroscopyat3t AT tanasecostin frequencydriftinmrspectroscopyat3t AT tappersofie frequencydriftinmrspectroscopyat3t AT tegenthoffmartin frequencydriftinmrspectroscopyat3t AT thielthomas frequencydriftinmrspectroscopyat3t AT thiouxmarc frequencydriftinmrspectroscopyat3t AT truongpeter frequencydriftinmrspectroscopyat3t AT vandijkpim frequencydriftinmrspectroscopyat3t AT vellanolan frequencydriftinmrspectroscopyat3t AT vidyasagarrishma frequencydriftinmrspectroscopyat3t AT vovkandrej frequencydriftinmrspectroscopyat3t AT wangguangbin frequencydriftinmrspectroscopyat3t AT westlyelarst frequencydriftinmrspectroscopyat3t AT wilburtimothyk frequencydriftinmrspectroscopyat3t AT willoughbywilliamr frequencydriftinmrspectroscopyat3t AT wilsonmartin frequencydriftinmrspectroscopyat3t AT wittsackhansjorg frequencydriftinmrspectroscopyat3t AT woodsadamj frequencydriftinmrspectroscopyat3t AT wuyenchien frequencydriftinmrspectroscopyat3t AT xujunqian frequencydriftinmrspectroscopyat3t AT lopezmariayanez frequencydriftinmrspectroscopyat3t AT yeungdavidkw frequencydriftinmrspectroscopyat3t AT zhaoqun frequencydriftinmrspectroscopyat3t AT zhouxiaopeng frequencydriftinmrspectroscopyat3t AT zupangasper frequencydriftinmrspectroscopyat3t AT eddenrichardae frequencydriftinmrspectroscopyat3t |