Cargando…
Range probing as a quality control tool for CBCT‐based synthetic CTs: In vivo application for head and neck cancer patients
PURPOSE: Cone‐beam CT (CBCT)‐based synthetic CTs (sCT) produced with a deep convolutional neural network (DCNN) show high image quality, suggesting their potential usability in adaptive proton therapy workflows. However, the nature of such workflows involving DCNNs prevents the user from having dire...
Autores principales: | Seller Oria, Carmen, Thummerer, Adrian, Free, Jeffrey, Langendijk, Johannes A., Both, Stefan, Knopf, Antje C., Meijers, Arturs |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456797/ https://www.ncbi.nlm.nih.gov/pubmed/34077554 http://dx.doi.org/10.1002/mp.15020 |
Ejemplares similares
-
Clinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer
por: Thummerer, Adrian, et al.
Publicado: (2021) -
Reproducibility of the lung anatomy under active breathing coordinator control: Dosimetric consequences for scanned proton treatments
por: den Otter, Lydia A., et al.
Publicado: (2018) -
Deep learning–based 4D‐synthetic CTs from sparse‐view CBCTs for dose calculations in adaptive proton therapy
por: Thummerer, Adrian, et al.
Publicado: (2022) -
Pre‐treatment analysis of non‐rigid variations can assist robust intensity‐modulated proton therapy plan selection for head and neck patients
por: Zhang, Ying, et al.
Publicado: (2022) -
A preclinical microbeam facility with a conventional x‐ray tube
por: Bartzsch, Stefan, et al.
Publicado: (2016)