Cargando…

Heterogeneously Catalyzed Aerobic Oxidation of Methane to a Methyl Derivative

A promising strategy to break through the selectivity‐conversion limit of direct methane conversion to achieve high yields is the protection of methanol via esterification to a more stable methyl ester. We present an aerobic methane‐to‐methyl‐ester approach that utilizes a highly dispersed, cobalt‐c...

Descripción completa

Detalles Bibliográficos
Autores principales: Blankenship, Andrea N., Ravi, Manoj, Newton, Mark A., van Bokhoven, Jeroen A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456920/
https://www.ncbi.nlm.nih.gov/pubmed/34076327
http://dx.doi.org/10.1002/anie.202104153
Descripción
Sumario:A promising strategy to break through the selectivity‐conversion limit of direct methane conversion to achieve high yields is the protection of methanol via esterification to a more stable methyl ester. We present an aerobic methane‐to‐methyl‐ester approach that utilizes a highly dispersed, cobalt‐containing solid catalyst, along with significantly more favorable reaction conditions compared to existing homogeneously‐catalyzed approaches (e.g. diluted acid, O(2) oxidant, moderate temperature and pressure). The trifluoroacetic acid medium is diluted (<25 wt %) with an inert fluorous co‐solvent that can be recovered after the separation of the methyl trifluoroacetate via liquid–liquid extraction at ambient conditions. Silica‐supported cobalt catalysts are highly active in this system, with competitive yields and turnovers in comparison to known aerobic transition metal‐based catalytic systems.