Cargando…
N‐Heterocyclic Carbene/Carboxylic Acid Co‐Catalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading
We report the discovery that simple carboxylic acids, such as benzoic acid, boost the activity of N‐heterocyclic carbene (NHC) catalysts in the oxidative esterification of aldehydes. A simple and efficient protocol for the transformation of a wide range of sterically hindered α‐ and β‐substituted al...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457137/ https://www.ncbi.nlm.nih.gov/pubmed/34010504 http://dx.doi.org/10.1002/anie.202104712 |
Sumario: | We report the discovery that simple carboxylic acids, such as benzoic acid, boost the activity of N‐heterocyclic carbene (NHC) catalysts in the oxidative esterification of aldehydes. A simple and efficient protocol for the transformation of a wide range of sterically hindered α‐ and β‐substituted aliphatic aldehydes/enals, catalyzed by a novel and readily accessible N‐Mes‐/N‐2,4,6‐trichlorophenyl 1,2,4‐triazolium salt, and benzoic acid as co‐catalyst, was developed. A whole series of α/β‐substituted aliphatic aldehydes/enals hitherto not amenable to NHC‐catalyzed esterification could be reacted at typical catalyst loadings of 0.02–1.0 mol %. For benzaldehyde, even 0.005 mol % of NHC catalyst proved sufficient: the lowest value ever achieved in NHC catalysis. Preliminary studies point to carboxylic acid‐induced acceleration of acyl transfer from azolium enolate intermediates as the mechanistic basis of the observed effect. |
---|