Cargando…

Avalanches in cardiology

Sudden cardiac death (SCD) accounts for 15%–60% of mortality in patients with heart disease. Generally, this has been attributed to ventricular tachyarrhythmia. However, ventricular tachyarrhythmia has been documented or strongly suspected on clinical grounds in a relatively small proportion of SCD...

Descripción completa

Detalles Bibliográficos
Autor principal: Subramanyan, Raghavan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457267/
https://www.ncbi.nlm.nih.gov/pubmed/34667416
http://dx.doi.org/10.4103/apc.apc_235_20
_version_ 1784571053142441984
author Subramanyan, Raghavan
author_facet Subramanyan, Raghavan
author_sort Subramanyan, Raghavan
collection PubMed
description Sudden cardiac death (SCD) accounts for 15%–60% of mortality in patients with heart disease. Generally, this has been attributed to ventricular tachyarrhythmia. However, ventricular tachyarrhythmia has been documented or strongly suspected on clinical grounds in a relatively small proportion of SCD patients (8%–50%). Attempted prophylaxis of SCD by implantation of cardioverter-defibrillator is associated with variable success in different subsets of high-risk cardiac patients (30%–70%). A significant number of SCD, therefore, appear to be due to catastrophic circulatory failure. Multiple interdependent compensatory mechanisms help to maintain circulation in advanced cardiac disease. Rapid, unexpected, and massive breakdown of the compensated state can be precipitated by small and often imperceptible triggers. The initial critical but stable state followed by rapid circulatory failure and death has been considered to be analogous to snow avalanches. It is typically described in patients with left ventricular (LV) dysfunction (ischemic or nonischemic). It is now recognized that SCD can also happen in conditions where the right ventricle (RV) takes the brunt of the hemodynamic load. Advanced pulmonary arterial hypertension and operated patients of tetralogy of Fallot with pulmonary regurgitation are of particular interest to pediatric cardiologists. A large amount of data is available on LV changes and mechanics, while relatively little information is available on the mechanisms of RV adaptation to increased load and RV failure. Whether the triggers and the decompensatory processes are similar for the two ventricles is a moot point. This article highlights the currently available knowledge on the pathophysiology of SCD in RV overload states, with special reference to RV adaptive and decompensatory mechanisms, and therapeutic measures that can potentially interrupt the vicious downward course (cardiac avalanches).
format Online
Article
Text
id pubmed-8457267
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Wolters Kluwer - Medknow
record_format MEDLINE/PubMed
spelling pubmed-84572672021-10-18 Avalanches in cardiology Subramanyan, Raghavan Ann Pediatr Cardiol View Point Sudden cardiac death (SCD) accounts for 15%–60% of mortality in patients with heart disease. Generally, this has been attributed to ventricular tachyarrhythmia. However, ventricular tachyarrhythmia has been documented or strongly suspected on clinical grounds in a relatively small proportion of SCD patients (8%–50%). Attempted prophylaxis of SCD by implantation of cardioverter-defibrillator is associated with variable success in different subsets of high-risk cardiac patients (30%–70%). A significant number of SCD, therefore, appear to be due to catastrophic circulatory failure. Multiple interdependent compensatory mechanisms help to maintain circulation in advanced cardiac disease. Rapid, unexpected, and massive breakdown of the compensated state can be precipitated by small and often imperceptible triggers. The initial critical but stable state followed by rapid circulatory failure and death has been considered to be analogous to snow avalanches. It is typically described in patients with left ventricular (LV) dysfunction (ischemic or nonischemic). It is now recognized that SCD can also happen in conditions where the right ventricle (RV) takes the brunt of the hemodynamic load. Advanced pulmonary arterial hypertension and operated patients of tetralogy of Fallot with pulmonary regurgitation are of particular interest to pediatric cardiologists. A large amount of data is available on LV changes and mechanics, while relatively little information is available on the mechanisms of RV adaptation to increased load and RV failure. Whether the triggers and the decompensatory processes are similar for the two ventricles is a moot point. This article highlights the currently available knowledge on the pathophysiology of SCD in RV overload states, with special reference to RV adaptive and decompensatory mechanisms, and therapeutic measures that can potentially interrupt the vicious downward course (cardiac avalanches). Wolters Kluwer - Medknow 2021 2021-08-17 /pmc/articles/PMC8457267/ /pubmed/34667416 http://dx.doi.org/10.4103/apc.apc_235_20 Text en Copyright: © 2021 Annals of Pediatric Cardiology https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle View Point
Subramanyan, Raghavan
Avalanches in cardiology
title Avalanches in cardiology
title_full Avalanches in cardiology
title_fullStr Avalanches in cardiology
title_full_unstemmed Avalanches in cardiology
title_short Avalanches in cardiology
title_sort avalanches in cardiology
topic View Point
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457267/
https://www.ncbi.nlm.nih.gov/pubmed/34667416
http://dx.doi.org/10.4103/apc.apc_235_20
work_keys_str_mv AT subramanyanraghavan avalanchesincardiology