Cargando…
Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition
In the last decade, machine learning and artificial intelligence applications have received a significant boost in performance and attention in both academic research and industry. The success behind most of the recent state-of-the-art methods can be attributed to the latest developments in deep lea...
Autores principales: | Raschka, Sebastian, Kaufman, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457393/ https://www.ncbi.nlm.nih.gov/pubmed/32645448 http://dx.doi.org/10.1016/j.ymeth.2020.06.016 |
Ejemplares similares
-
Editorial: New approaches for the discovery of GPCR ligands
por: Morales, Paula, et al.
Publicado: (2023) -
Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms
por: Seo, Sangmin, et al.
Publicado: (2018) -
GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds
por: Ahmed, Marawan, et al.
Publicado: (2021) -
Discovery of GPCR ligands for probing signal transduction pathways
por: Brogi, Simone, et al.
Publicado: (2014) -
Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition
por: Bemister-Buffington, Joseph, et al.
Publicado: (2020)