Cargando…
Learning from Binary Multiway Data: Probabilistic Tensor Decomposition and its Statistical Optimality
We consider the problem of decomposing a higher-order tensor with binary entries. Such data problems arise frequently in applications such as neuroimaging, recommendation system, topic modeling, and sensor network localization. We propose a multilinear Bernoulli model, develop a rank-constrained lik...
Autores principales: | Wang, Miaoyan, Li, Lexin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457422/ https://www.ncbi.nlm.nih.gov/pubmed/34557057 |
Ejemplares similares
-
Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data
por: Wang, Ruo Han, et al.
Publicado: (2023) -
Multiway clustering with time-varying parameters
por: Cerqueti, Roy, et al.
Publicado: (2022) -
Exploring dynamic metabolomics data with multiway data analysis: a simulation study
por: Li, Lu, et al.
Publicado: (2022) -
Real-Time Multiobject Tracking Based on Multiway Concurrency
por: Gong, Xuan, et al.
Publicado: (2021) -
Multiway modeling and analysis in stem cell systems biology
por: Yener, Bülent, et al.
Publicado: (2008)