Cargando…
Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis
When approaching thyroid gland tumor classification, the differentiation between samples with and without “papillary thyroid carcinoma-like” nuclei is a daunting task with high inter-observer variability among pathologists. Thus, there is increasing interest in the use of machine learning approaches...
Autores principales: | Böhland, Moritz, Tharun, Lars, Scherr, Tim, Mikut, Ralf, Hagenmeyer, Veit, Thompson, Lester D. R., Perner, Sven, Reischl, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457451/ https://www.ncbi.nlm.nih.gov/pubmed/34550999 http://dx.doi.org/10.1371/journal.pone.0257635 |
Ejemplares similares
-
Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy
por: Scherr, Tim, et al.
Publicado: (2020) -
BeadNet: deep learning-based bead detection and counting in low-resolution microscopy images
por: Scherr, Tim, et al.
Publicado: (2020) -
A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction
por: Löffler, Katharina, et al.
Publicado: (2021) -
A Benchmark Data Set to Evaluate the Illumination Robustness of Image Processing Algorithms for Object Segmentation and Classification
por: Khan, Arif ul Maula, et al.
Publicado: (2015) -
Morphology of the nuclei of papillary carcinoma of the thyroid.
por: Gray, A., et al.
Publicado: (1969)