Cargando…
Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge
There is an ever-growing mismatch between the proliferation of data-intensive, power-hungry deep learning solutions in the machine learning (ML) community and the need for agile, portable solutions in resource-constrained devices, particularly for intelligence at the edge. In this paper, we present...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457635/ https://www.ncbi.nlm.nih.gov/pubmed/34568811 http://dx.doi.org/10.3389/frai.2021.568384 |
_version_ | 1784571141656936448 |
---|---|
author | Li, Kan Príncipe, José C. |
author_facet | Li, Kan Príncipe, José C. |
author_sort | Li, Kan |
collection | PubMed |
description | There is an ever-growing mismatch between the proliferation of data-intensive, power-hungry deep learning solutions in the machine learning (ML) community and the need for agile, portable solutions in resource-constrained devices, particularly for intelligence at the edge. In this paper, we present a fundamentally novel approach that leverages data-driven intelligence with biologically-inspired efficiency. The proposed Sparse Embodiment Neural-Statistical Architecture (SENSA) decomposes the learning task into two distinct phases: a training phase and a hardware embedment phase where prototypes are extracted from the trained network and used to construct fast, sparse embodiment for hardware deployment at the edge. Specifically, we propose the Sparse Pulse Automata via Reproducing Kernel (SPARK) method, which first constructs a learning machine in the form of a dynamical system using energy-efficient spike or pulse trains, commonly used in neuroscience and neuromorphic engineering, then extracts a rule-based solution in the form of automata or lookup tables for rapid deployment in edge computing platforms. We propose to use the theoretically-grounded unifying framework of the Reproducing Kernel Hilbert Space (RKHS) to provide interpretable, nonlinear, and nonparametric solutions, compared to the typical neural network approach. In kernel methods, the explicit representation of the data is of secondary nature, allowing the same algorithm to be used for different data types without altering the learning rules. To showcase SPARK’s capabilities, we carried out the first proof-of-concept demonstration on the task of isolated-word automatic speech recognition (ASR) or keyword spotting, benchmarked on the TI-46 digit corpus. Together, these energy-efficient and resource-conscious techniques will bring advanced machine learning solutions closer to the edge. |
format | Online Article Text |
id | pubmed-8457635 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84576352021-09-23 Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge Li, Kan Príncipe, José C. Front Artif Intell Artificial Intelligence There is an ever-growing mismatch between the proliferation of data-intensive, power-hungry deep learning solutions in the machine learning (ML) community and the need for agile, portable solutions in resource-constrained devices, particularly for intelligence at the edge. In this paper, we present a fundamentally novel approach that leverages data-driven intelligence with biologically-inspired efficiency. The proposed Sparse Embodiment Neural-Statistical Architecture (SENSA) decomposes the learning task into two distinct phases: a training phase and a hardware embedment phase where prototypes are extracted from the trained network and used to construct fast, sparse embodiment for hardware deployment at the edge. Specifically, we propose the Sparse Pulse Automata via Reproducing Kernel (SPARK) method, which first constructs a learning machine in the form of a dynamical system using energy-efficient spike or pulse trains, commonly used in neuroscience and neuromorphic engineering, then extracts a rule-based solution in the form of automata or lookup tables for rapid deployment in edge computing platforms. We propose to use the theoretically-grounded unifying framework of the Reproducing Kernel Hilbert Space (RKHS) to provide interpretable, nonlinear, and nonparametric solutions, compared to the typical neural network approach. In kernel methods, the explicit representation of the data is of secondary nature, allowing the same algorithm to be used for different data types without altering the learning rules. To showcase SPARK’s capabilities, we carried out the first proof-of-concept demonstration on the task of isolated-word automatic speech recognition (ASR) or keyword spotting, benchmarked on the TI-46 digit corpus. Together, these energy-efficient and resource-conscious techniques will bring advanced machine learning solutions closer to the edge. Frontiers Media S.A. 2021-09-08 /pmc/articles/PMC8457635/ /pubmed/34568811 http://dx.doi.org/10.3389/frai.2021.568384 Text en Copyright © 2021 Li and Príncipe. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Artificial Intelligence Li, Kan Príncipe, José C. Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge |
title | Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge |
title_full | Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge |
title_fullStr | Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge |
title_full_unstemmed | Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge |
title_short | Biologically-Inspired Pulse Signal Processing for Intelligence at the Edge |
title_sort | biologically-inspired pulse signal processing for intelligence at the edge |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457635/ https://www.ncbi.nlm.nih.gov/pubmed/34568811 http://dx.doi.org/10.3389/frai.2021.568384 |
work_keys_str_mv | AT likan biologicallyinspiredpulsesignalprocessingforintelligenceattheedge AT principejosec biologicallyinspiredpulsesignalprocessingforintelligenceattheedge |