Cargando…

Lineage-specific variation in the evolutionary stability of coral photosymbiosis

More than half of reef-building corals (Scleractinia) participate in a nutritional symbiosis, known as photosymbiosis, with photosynthetic dinoflagellates that ranges from obligate to facultative dependence. Fitting hidden-rates models allowing among-lineage variation in the rate of trait evolution...

Descripción completa

Detalles Bibliográficos
Autores principales: Gault, Jordan A., Bentlage, Bastian, Huang, Danwei, Kerr, Alexander M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457658/
https://www.ncbi.nlm.nih.gov/pubmed/34550731
http://dx.doi.org/10.1126/sciadv.abh4243
Descripción
Sumario:More than half of reef-building corals (Scleractinia) participate in a nutritional symbiosis, known as photosymbiosis, with photosynthetic dinoflagellates that ranges from obligate to facultative dependence. Fitting hidden-rates models allowing among-lineage variation in the rate of trait evolution to supertree and molecular phylogenies of Scleractinia, we reconstruct the history of photosymbiosis within Scleractinia and characterize its evolutionary stability. We find that most lineages of scleractinians are extraordinarily stable for the trait, evincing no instances of loss, but that in some clades photosymbiosis is more labile, thus providing a framework for comparative studies to further our mechanistic understanding of the factors that shape the evolutionary fates of scleractinian photosymbiosis.