Cargando…
A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current
The rapid development of the Internet of Things depends on wireless devices and their network. Traditional wireless sensing and transmission technology still requires multiple modules for sensing, signal modulation, transmission, and power, making the whole system bulky, rigid, and costly. Here, we...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457664/ https://www.ncbi.nlm.nih.gov/pubmed/34550743 http://dx.doi.org/10.1126/sciadv.abi6751 |
Sumario: | The rapid development of the Internet of Things depends on wireless devices and their network. Traditional wireless sensing and transmission technology still requires multiple modules for sensing, signal modulation, transmission, and power, making the whole system bulky, rigid, and costly. Here, we proposed a paradigm shift wireless sensing solution based on the breakdown discharge–induced displacement current. Through that, we can combine the abovementioned functional modules in a single unit of self-powered wireless sensing e-sticker (SWISE), which features a small size (down to 9 mm by 9 mm) and long effective transmission distance (>30 m) when compared to existing wireless sensing technologies. Furthermore, SWISEs have functions of multipoint motion sensing and gas detection in fully self-powered manner. This work proposes a solution for flexible self-powered wireless sensing platforms, which shows great potential for implantable and wearable electronics, robotics, health care, infrastructure monitoring, human-machine interface, virtual reality, etc. |
---|