Cargando…
High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning
Modern immunologic research increasingly requires high-dimensional analyses to understand the complex milieu of cell types that comprise the tissue microenvironments of disease. To achieve this, we developed Infinity Flow combining hundreds of overlapping flow cytometry panels using machine learning...
Autores principales: | Becht, Etienne, Tolstrup, Daniel, Dutertre, Charles-Antoine, Morawski, Peter A., Campbell, Daniel J., Ginhoux, Florent, Newell, Evan W., Gottardo, Raphael, Headley, Mark B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457665/ https://www.ncbi.nlm.nih.gov/pubmed/34550730 http://dx.doi.org/10.1126/sciadv.abg0505 |
Ejemplares similares
-
Topological screen identifies hundreds of Cp190- and CTCF-dependent Drosophila chromatin insulator elements
por: Kahn, Tatyana G., et al.
Publicado: (2023) -
Mechanisms of ion selectivity and throughput in the mitochondrial calcium uniporter
por: Delgado, Bryce D., et al.
Publicado: (2022) -
A regulatory T cell signature distinguishes the immune landscape of COVID-19 patients from those with other respiratory infections
por: Vick, Sarah C., et al.
Publicado: (2021) -
Massively parallel quantification of phenotypic heterogeneity in single-cell drug responses
por: Yellen, Benjamin B., et al.
Publicado: (2021) -
Single-molecule, quantitative detection of low-abundance somatic mutations by high-throughput sequencing
por: Maslov, Alexander Y., et al.
Publicado: (2022)