Cargando…

Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms

The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic...

Descripción completa

Detalles Bibliográficos
Autores principales: Greco, Carolina M., Koronowski, Kevin B., Smith, Jacob G., Shi, Jiejun, Kunderfranco, Paolo, Carriero, Roberta, Chen, Siwei, Samad, Muntaha, Welz, Patrick-Simon, Zinna, Valentina M., Mortimer, Thomas, Chun, Sung Kook, Shimaji, Kohei, Sato, Tomoki, Petrus, Paul, Kumar, Arun, Vaca-Dempere, Mireia, Deryagian, Oleg, Van, Cassandra, Kuhn, José Manuel Monroy, Lutter, Dominik, Seldin, Marcus M., Masri, Selma, Li, Wei, Baldi, Pierre, Dyar, Kenneth A., Muñoz-Cánoves, Pura, Benitah, Salvador Aznar, Sassone-Corsi, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457671/
https://www.ncbi.nlm.nih.gov/pubmed/34550736
http://dx.doi.org/10.1126/sciadv.abi7828
_version_ 1784571150738653184
author Greco, Carolina M.
Koronowski, Kevin B.
Smith, Jacob G.
Shi, Jiejun
Kunderfranco, Paolo
Carriero, Roberta
Chen, Siwei
Samad, Muntaha
Welz, Patrick-Simon
Zinna, Valentina M.
Mortimer, Thomas
Chun, Sung Kook
Shimaji, Kohei
Sato, Tomoki
Petrus, Paul
Kumar, Arun
Vaca-Dempere, Mireia
Deryagian, Oleg
Van, Cassandra
Kuhn, José Manuel Monroy
Lutter, Dominik
Seldin, Marcus M.
Masri, Selma
Li, Wei
Baldi, Pierre
Dyar, Kenneth A.
Muñoz-Cánoves, Pura
Benitah, Salvador Aznar
Sassone-Corsi, Paolo
author_facet Greco, Carolina M.
Koronowski, Kevin B.
Smith, Jacob G.
Shi, Jiejun
Kunderfranco, Paolo
Carriero, Roberta
Chen, Siwei
Samad, Muntaha
Welz, Patrick-Simon
Zinna, Valentina M.
Mortimer, Thomas
Chun, Sung Kook
Shimaji, Kohei
Sato, Tomoki
Petrus, Paul
Kumar, Arun
Vaca-Dempere, Mireia
Deryagian, Oleg
Van, Cassandra
Kuhn, José Manuel Monroy
Lutter, Dominik
Seldin, Marcus M.
Masri, Selma
Li, Wei
Baldi, Pierre
Dyar, Kenneth A.
Muñoz-Cánoves, Pura
Benitah, Salvador Aznar
Sassone-Corsi, Paolo
author_sort Greco, Carolina M.
collection PubMed
description The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.
format Online
Article
Text
id pubmed-8457671
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-84576712021-10-01 Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms Greco, Carolina M. Koronowski, Kevin B. Smith, Jacob G. Shi, Jiejun Kunderfranco, Paolo Carriero, Roberta Chen, Siwei Samad, Muntaha Welz, Patrick-Simon Zinna, Valentina M. Mortimer, Thomas Chun, Sung Kook Shimaji, Kohei Sato, Tomoki Petrus, Paul Kumar, Arun Vaca-Dempere, Mireia Deryagian, Oleg Van, Cassandra Kuhn, José Manuel Monroy Lutter, Dominik Seldin, Marcus M. Masri, Selma Li, Wei Baldi, Pierre Dyar, Kenneth A. Muñoz-Cánoves, Pura Benitah, Salvador Aznar Sassone-Corsi, Paolo Sci Adv Biomedicine and Life Sciences The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism. American Association for the Advancement of Science 2021-09-22 /pmc/articles/PMC8457671/ /pubmed/34550736 http://dx.doi.org/10.1126/sciadv.abi7828 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Greco, Carolina M.
Koronowski, Kevin B.
Smith, Jacob G.
Shi, Jiejun
Kunderfranco, Paolo
Carriero, Roberta
Chen, Siwei
Samad, Muntaha
Welz, Patrick-Simon
Zinna, Valentina M.
Mortimer, Thomas
Chun, Sung Kook
Shimaji, Kohei
Sato, Tomoki
Petrus, Paul
Kumar, Arun
Vaca-Dempere, Mireia
Deryagian, Oleg
Van, Cassandra
Kuhn, José Manuel Monroy
Lutter, Dominik
Seldin, Marcus M.
Masri, Selma
Li, Wei
Baldi, Pierre
Dyar, Kenneth A.
Muñoz-Cánoves, Pura
Benitah, Salvador Aznar
Sassone-Corsi, Paolo
Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
title Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
title_full Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
title_fullStr Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
title_full_unstemmed Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
title_short Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
title_sort integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457671/
https://www.ncbi.nlm.nih.gov/pubmed/34550736
http://dx.doi.org/10.1126/sciadv.abi7828
work_keys_str_mv AT grecocarolinam integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT koronowskikevinb integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT smithjacobg integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT shijiejun integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT kunderfrancopaolo integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT carrieroroberta integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT chensiwei integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT samadmuntaha integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT welzpatricksimon integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT zinnavalentinam integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT mortimerthomas integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT chunsungkook integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT shimajikohei integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT satotomoki integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT petruspaul integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT kumararun integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT vacademperemireia integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT deryagianoleg integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT vancassandra integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT kuhnjosemanuelmonroy integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT lutterdominik integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT seldinmarcusm integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT masriselma integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT liwei integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT baldipierre integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT dyarkennetha integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT munozcanovespura integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT benitahsalvadoraznar integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms
AT sassonecorsipaolo integrationoffeedingbehaviorbythelivercircadianclockrevealsnetworkdependencyofmetabolicrhythms